AN APPLICATION OF DISCRETE INEQUALITY TO 2ND-ORDER NONLINEAR OSCILLATION

被引:29
作者
THANDAPANI, E
GYORI, I
LALLI, BS
机构
[1] UNIV VESZPREM,DEPT MATH,H-8201 VESZPREM,HUNGARY
[2] UNIV SASKATCHEWAN,DEPT MATH,SASKATOON S7N 0W0,SK,CANADA
关键词
D O I
10.1006/jmaa.1994.1294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By using some simple discrete inequalities oscillation criteria are provided for the second order difference equations Delta(2)y(n) + a(n+1)f(y(n+1)) = 0, n epsilon N, where the operator Delta is defined by Delta y, = y(n+1) - y(n), {a(n)} is a real sequence. The function f is such that uf(u) > 0 for u not equal 0 and f(u) - f(v) = g(u, v)(u - v) for u, v not equal 0 for some nonnegative function g. (C) 1994 Academic Press, Inc.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 11 条
[1]  
AGARWAL RP, 1984, INT SER NUMER MATH, V71, P95
[2]  
BLASKO R, 1990, J MATH ANAL APPL, V151, P330
[3]  
GYORI I, 1991, OSCILLATORY THEORY D
[4]   A 2ND-ORDER NON-LINEAR DIFFERENCE EQUATION - OSCILLATION AND ASYMPTOTIC-BEHAVIOR [J].
HOOKER, JW ;
PATULA, WT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1983, 91 (01) :9-29
[5]  
KLULENOVIC MRS, 1984, ANAL STI U IASI, V30, P39
[6]  
KWANG MK, 1982, J DIFFER EQUATIONS, V46, P63
[7]  
LADAS G, 1990, RECENT DEV OSCILLATI, P321
[9]  
Szmanda B., 1983, AN POLONICI MATH, V43, P225