SEPARABILITY AND LAX PAIRS FOR HENON-HEILES SYSTEM

被引:54
作者
RAVOSON, V [1 ]
GAVRILOV, L [1 ]
CABOZ, R [1 ]
机构
[1] UNIV TOULOUSE 3,TOPOL & GEOMETRIE LAB,CNRS,URA,F-31062 TOULOUSE,FRANCE
关键词
D O I
10.1063/1.530123
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Hamiltonian system corresponding to the (generalized) Henon-Heiles Hamiltonian H=1/2(p(x)2+p(y)2)+1/2Ax2+1/2By2+x2y+epsilony3 is known to be integrable in the following three cases: (A=B, epsilon=1/3); (epsilon=2); (B=16A, epsilon=16/3). In the first two the system has been integrated by making use of genus one and genus two theta functions. We show that in the third case the system can also be integrated by making use of elliptic functions. Finally, using the Fairbanks theorem, we find Lax pairs for each of the three integrable systems under consideration.
引用
收藏
页码:2385 / 2393
页数:9
相关论文
共 20 条
[1]   A CONNECTION BETWEEN NON-LINEAR EVOLUTION-EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF P-TYPE .1. [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :715-721
[2]  
ADLER M, 1993, IN PRESS PERSPECTIVE
[3]  
AIZAWA Y, 1972, J PHYS SOC JPN, V32, P1636, DOI 10.1143/JPSJ.32.1636
[4]   THE COMPLETE WHITTAKER THEOREM FOR TWO-DIMENSIONAL INTEGRABLE SYSTEMS AND ITS APPLICATION [J].
ANKIEWICZ, A ;
PASK, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (18) :4203-4208
[5]  
FAIRBANKS LD, 1988, COMPOS MATH, V68, P31
[6]   THE HENON-HEILES SYSTEM REVISITED [J].
FORDY, AP .
PHYSICA D, 1991, 52 (2-3) :204-210
[7]   BIFURCATIONS OF INVARIANT-MANIFOLDS IN THE GENERALIZED HENON-HEILES SYSTEM [J].
GAVRILOV, L .
PHYSICA D, 1989, 34 (1-2) :223-239
[8]  
GAVRILOV L, 1989, LAX PAIR HENON HEILE, P67
[9]   PAINLEVE PROPERTY AND INTEGRALS OF MOTION FOR THE HENON-HEILES SYSTEM [J].
GRAMMATICOS, B ;
DORIZZI, B ;
PADJEN, R .
PHYSICS LETTERS A, 1982, 89 (03) :111-113
[10]  
GREENE J, 1982, J MATH PHYS, V23, P531