THE SPECTRUM OF THE DIRAC OPERATOR ON THE HYPERBOLIC SPACE

被引:11
作者
BUNKE, U
机构
[1] Fachbereich Mathematik, Ernst-Moritz-Arndt-Universität, Greifswald, D‐2200
关键词
D O I
10.1002/mana.19911530117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We represent the real hyperbolic space H(n) as the rank one homogeneous space Spin (1, n)/Spin (n) and the spinor bundle S of H as the homogeneous bundle Spin (1, n) x Spin (n)V(DELTA)where V(DELTA) is the spinor representation space of Spin (n). The representation theoretic decomposition of L2(H, S) combined with the PARTHASARATHY formula for the DIRAC operator D yields the spectral representation of D2.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 20 条
[1]   GEOMETRIC CONSTRUCTION OF DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS [J].
ATIYAH, M ;
SCHMID, W .
INVENTIONES MATHEMATICAE, 1977, 42 :1-62
[2]   HARMONIC-ANALYSIS FOR VECTOR-FIELDS ON HYPERBOLIC SPACES [J].
BADERTSCHER, E ;
REIMANN, HM .
MATHEMATISCHE ZEITSCHRIFT, 1989, 202 (03) :431-456
[3]  
BAUM H, 1981, TEUBNERTEXTE, V41
[4]  
CHOU AW, 1985, T AMS, V289, P7
[5]  
CONNES A, 1982, P SYMP PURE MATH, V38, P419
[6]   THE DIFFERENTIAL FORM SPECTRUM OF HYPERBOLIC SPACE [J].
DONNELLY, H .
MANUSCRIPTA MATHEMATICA, 1981, 33 (3-4) :365-385
[8]   POISSON TRANSFORMATION OF DIFFERENTIAL FORMS - THE CASE OF HYPERBOLIC SPACE [J].
GAILLARD, PY .
COMMENTARII MATHEMATICI HELVETICI, 1986, 61 (04) :581-616
[9]  
Harish-Chandra, 1965, ACTA MATH-DJURSHOLM, V113, P241, DOI DOI 10.1007/BF02391779
[10]   2 THEOREMS ON SEMI-SIMPLE LIE GROUPS [J].
HARISHCH. .
ANNALS OF MATHEMATICS, 1966, 83 (01) :74-&