NONCONVEX SEPARATION THEOREMS AND SOME APPLICATIONS IN VECTOR OPTIMIZATION

被引:352
作者
GERTH, C [1 ]
WEIDNER, P [1 ]
机构
[1] MARTIN LUTHER UNIV,SEKT MATH,O-4010 HALLE,GERMANY
关键词
efficiency; proper efficiency; Separation theorems; vector optimization; weak efficiency;
D O I
10.1007/BF00940478
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Separation theorems for an arbitrary set and a not necessarily convex set in a linear topological space are proved and applied to vector optimization. Scalarization results for weakly efficient points and properly efficient points are deduced. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:297 / 320
页数:24
相关论文
共 23 条
[1]  
[Anonymous], 1986, MATH VECTOR OPTIMIZA
[2]  
BERNAU H, 1987, OPTIMIZATION MATH PH, P21
[3]   STRUCTURE OF ADMISSIBLE POINTS WITH RESPECT TO CONE DOMINANCE [J].
BITRAN, GR ;
MAGNANTI, TL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (04) :573-614
[4]  
BROSOWSKI B, 1987, OPTIMIZATION MATH PH, P37
[5]  
ELSTER KH, 1987, RECENT ADV HIST DEV, P129
[6]  
Gerstewitz C., 1985, Wissenschaftliche Zeitschrift der Technischen Hochschule Ilmenau, V31, P61
[7]  
GERSTEWITZ C, 1986, SEMINARBERICHTE SEKT, P19
[8]   PROPER EFFICIENCY WITH RESPECT TO CONES [J].
HENIG, MI .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1982, 36 (03) :387-407
[9]  
HILDENBRANDT R, 1982, THESIS TH ILMENAU A
[10]  
Holmes R. B., 1975, GEOMETRIC FUNCTIONAL