THE MINIMUM SATISFIABILITY PROBLEM

被引:78
作者
KOHLI, R
KRISHNAMURTI, R
MIRCHANDANI, P
机构
[1] SIMON FRASER UNIV, SCH COMP SCI, BURNABY V5A 1S6, BC, CANADA
[2] UNIV PITTSBURGH, JOSEPH M KATZ SCH BUSINESS, PITTSBURGH, PA 15260 USA
关键词
MINIMUM SATISFIABILITY; SATISFIABILITY; HEURISTICS; PROBABILISTIC ALGORITHMS; AVERAGE PERFORMANCE; HORN FORMULAS;
D O I
10.1137/S0895480191220836
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper shows that a minimization version of satisfiability is strongly NP-hard, even if each clause contains no more than two literals and/or each clause contains at most one unnegated variable. The worst-case and average-case performances of greedy and probabilistic greedy heuristics for the problem are examined, and tight upper bounds on the performance ratio in each case are developed.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 6 条
[1]   LINEAR-TIME ALGORITHMS FOR TESTING THE SATISFIABILITY OF PROPOSITIONAL HORN FORMULAE. [J].
Dowling, William F. ;
Gallier, Jean H. .
Journal of Logic Programming, 1984, 1 (03) :267-284
[2]  
Even S., 1976, SIAM Journal on Computing, V5, P691, DOI 10.1137/0205048
[3]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[4]  
Garey M. R., 1979, COMPUTERS INTRACTIBI
[5]   APPROXIMATION ALGORITHMS FOR COMBINATORIAL PROBLEMS [J].
JOHNSON, DS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1974, 9 (03) :256-278
[6]  
KOHLI R, 1989, SIAM J DISCRETE MATH, V2, P508