DECAY AND REGULARITY FOR THE SCHRODINGER-EQUATION

被引:93
作者
BENARTZI, M
KLAINERMAN, S
机构
[1] HEBREW UNIV JERUSALEM,INST MATH,IL-91904 JERUSALEM,ISRAEL
[2] PRINCETON UNIV,DEPT MATH,PRINCETON,NJ 08544
来源
JOURNAL D ANALYSE MATHEMATIQUE | 1992年 / 58卷
关键词
D O I
10.1007/BF02790356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Schrodinger equation iu(t) = (-DELTA + V)u, u(x, 0) = u0(x) is-an-element-of L2(R(n)), n greater-than-or-equal-to 3 The following estimates are proved: (A) If V = 0 then for any 0 less-than-or-equal-to alpha < 1/2, integral-Rn+1 (\x\2alpha-2\\D(x)\(alpha)u(t,x)\2 dxdt less-than-or-equal-to C\\u0\\2, and for alpha = 1/2, s > 1/2, integral-Rn+1 (1 + \x\2)-s\\D(x)\1/2u(t,x)\2dxdt less-than-or-equal-to C\\u0\\2. (B) If \B(x)\ less-than-or-equal-to C(1 + \x\2)-1-delta, delta > 0, then (if 0 is neither an eigenvalue nor a resonance of -DELTA + V). Integral-Rn+1 (1 + \x\2)-1-delta\(I + (-DELTA + V)ac)1/4u(t,x)\2dxdt less-than-or-equal-to C\\P(ac)u0\\2.
引用
收藏
页码:25 / 37
页数:13
相关论文
共 5 条
[1]   LOCAL SMOOTHING AND CONVERGENCE PROPERTIES OF SCHRODINGER TYPE EQUATIONS [J].
BENARTZI, M ;
DEVINATZ, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 101 (02) :231-254
[2]  
BENARTZI M, 1987, MEMOIRS AMS 364, V66
[3]   LOCAL SMOOTHING PROPERTIES OF SCHRODINGER-EQUATIONS [J].
CONSTANTIN, P ;
SAUT, JC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :791-810
[4]   DECAY-ESTIMATES FOR SCHRODINGER-OPERATORS [J].
JOURNE, JL ;
SOFFER, A ;
SOGGE, CD .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (05) :573-604
[5]  
KATO T, 1989, REV MATH PHYS, V1