A SURVEY ON MEAN CONVERGENCE OF INTERPOLATORY PROCESSES

被引:28
作者
SZABADOS, J [1 ]
VERTESI, P [1 ]
机构
[1] HUNGARIAN ACAD SCI, INST MATH, H-1364 BUDAPEST, HUNGARY
关键词
INTERPOLATION; MEAN CONVERGENCE; WEIGHT FUNCTIONS; ORTHOGONAL POLYNOMIALS; SYSTEM OF NODES;
D O I
10.1016/0377-0427(92)90256-W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A detailed account of what happened in the theory of mean convergence of Lagrange and Hermite-Fejer type interpolation in the last fifty-five years is given. Starting from the classical result of Erdos and Turan, (hopefully) all important developments are considered, in some cases with an indication of the method of proof. Even some yet unpublished results are included. A list of references helps to orientate those interested in the details.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 69 条
[1]  
Alper SY., 1969, IZV VYESS UCHEBN ZAV, V11, P13
[2]   MEAN CONVERGENCE OF ORTHOGONAL SERIES AND LAGRANGE INTERPOLATION [J].
ASKEY, R .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1972, 23 (1-2) :71-85
[3]   SUMMABILITY OF JACOBI SERIES [J].
ASKEY, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 179 (MAY) :71-84
[4]  
BAJGUZOV NS, 1969, MAT ZAMETKI, V5, P183
[5]  
BALAZS K, IN PRESS ACTA MATH H
[6]  
CHUI CK, IN PRESS T AM MATH S
[7]  
CRISCUUOLO G, IN PRESS SIAM J MATH
[9]  
Ditzian Z., 1987, MODULI SMOOTHNESS
[10]   ON THE ALMOST EVERYWHERE DIVERGENCE OF LAGRANGE INTERPOLATORY POLYNOMIALS FOR ARBITRARY SYSTEM OF NODES [J].
ERDOS, P ;
VERTESI, P .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1980, 36 (1-2) :71-89