ON LOWER BOUND UPDATES IN PRIMAL POTENTIAL REDUCTION METHODS FOR LINEAR-PROGRAMMING

被引:3
作者
GONZAGA, CC
机构
[1] Department of Systems Engineering and Computer Sciences, COPPE-Federal University of Rio de Janeiro, Rio de Janeiro, 21945, RJ
关键词
INTERIOR POINT METHODS; LINEAR PROGRAMMING; POTENTIAL REDUCTION METHODS; KARMARKARS ALGORITHM;
D O I
10.1007/BF01582898
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a procedure for computing lower bounds for the optimal cost in a linear programming problem. Whenever the procedure succeeds, it finds a dual feasible slack and the associated duality gap. Although no projective transformations or problem restatements are used, the method coincides with the procedures by Todd and Burrell and by de Ghellinck and Vial when these procedures are applicable. The procedure applies directly to affine potential reduction algorithms, and improves on existent techniques for finding lower bounds.
引用
收藏
页码:415 / 428
页数:14
相关论文
共 22 条
[1]  
ANSTREICHER KM, 1992, IN PRESS MATH PROGRA
[2]   A Monotonic Projective Algorithm for Fractional Linear Programming [J].
Anstreicher, Kurt M. .
ALGORITHMICA, 1986, 1 (1-4) :483-498
[3]   A Polynomial Newton Method for Linear Programming [J].
de Ghellinck, Guy ;
Vial, Jean-Philippe .
ALGORITHMICA, 1986, 1 (1-4) :425-453
[4]  
FREUND RM, 1991, MATH PROGRAM, V51, P23
[5]  
GONZAGA C, 1988, MATH PROGRAM, V43, P151
[6]  
GONZAGA C, 1989, LARGE STEPS PATH FOL
[7]  
GONZAGA C., 1989, 862 CORN U SCH OP RE
[8]  
GONZAGA CC, 1991, ALGORITHMICA, V6, P153, DOI 10.1007/BF01759039
[9]  
GONZAGA CC, 1991, MATH PROGRAM, V49, P7
[10]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395