GENERALIZED FERMAT-MERSENNE NUMBER-THEORETIC TRANSFORM

被引:12
作者
DIMITROV, VS
COOKLEV, TV
DONEVSKY, BD
机构
[1] TECH UNIV PLOVDIV,PLOVDIV,BULGARIA
[2] TOKYO INST TECHNOL,FAC ENGN,TOKYO 152,JAPAN
[3] TECH UNIV SOFIA,IAMI,SOFIA,BULGARIA
来源
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING | 1994年 / 41卷 / 02期
关键词
D O I
10.1109/82.281844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A generalization of the Fermat and Mersenne number transform is suggested. The transforms are defined over finite fields and rings. This paper establishes the conditions necessary for these numbers to be prime. The length of the transforms is a highly composite number. An algorithm for finding primitive roots of unity is also discussed. The proposed transforms are characterized by respectable combinations of transform length, dynamic range and computational efficiency and can be used for fast convolution of integer sequences.
引用
收藏
页码:133 / 139
页数:7
相关论文
共 33 条
[1]   FAST CONVOLUTION USING FERMAT NUMBER TRANSFORMS WITH APPLICATIONS TO DIGITAL FILTERING [J].
AGARWAL, RC ;
BURRUS, CS .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1974, SP22 (02) :87-97
[2]   FAST MULTIDIMENSIONAL DISCRETE HARTLEY TRANSFORM USING FERMAT NUMBER TRANSFORM [J].
BOUSSAKTA, S ;
HOLT, AGJ .
IEE PROCEEDINGS-G CIRCUITS DEVICES AND SYSTEMS, 1988, 135 (06) :253-257
[3]  
CREUTZBURG R, 1988, J INFO P CYBERNETICS, V11, P573
[4]  
DIXON LE, 1919, HIST THEORY NUMBERS, V1, P376
[5]   THE GENERALIZED DISCRETE FOURIER-TRANSFORM IN RINGS OF ALGEBRAIC-INTEGERS [J].
DUBOIS, E ;
VENETSANOPOULOS, AN .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (02) :169-175
[6]  
EASTWOOD YW, 1977, COMPUT PHYSICS COMM, V13, P233
[7]   INTEGER CONVOLUTIONS OVER FINITE-FIELD GF(3.2N+1) [J].
GOLOMB, SW ;
REED, IS ;
TRUONG, TK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (02) :356-365
[8]   PROPERTIES OF SEQUENCE 3.2N+1 [J].
GOLOMB, SW .
MATHEMATICS OF COMPUTATION, 1976, 30 (135) :657-663
[9]  
HARDY GH, 1968, INTRO THEORY NUMBER, pCH5
[10]  
Karatsuba A., 1963, SOV PHYS DOKL, V7, P595