POISSON LAW FOR AXIOM-A DIFFEOMORPHISMS

被引:101
作者
HIRATA, M [1 ]
机构
[1] UNIV TOKYO,DEPT PURE & APPL SCI,MEGURO KU,TOKYO 153,JAPAN
关键词
D O I
10.1017/S0143385700007513
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let f be an Axiom A diffeomorphism, OMEGA its non wandering set, mu the Gibbs measure for the Lipschitz continuous potential. We consider the (suitably normalized) return times of the orbit to the epsilon-neighborhood of a point z is-an-element-of OMEGA and prove that for mu-a.e. z the sequence of the normalized return times converges to the Poisson point process in finite dimensional distribution as epsilon --> 0.
引用
收藏
页码:533 / 556
页数:24
相关论文
共 10 条
[1]  
[Anonymous], 1989, ERGODIC THEORY
[2]  
Ionescu-Tulcea C., 1950, ANN MATH, V52, P140
[3]  
MORITA T, 1985, OSAKA J MATH, V22, P489
[4]   RADIUS OF ESSENTIAL SPECTRUM [J].
NUSSBAUM, RD .
DUKE MATHEMATICAL JOURNAL, 1970, 37 (03) :473-&
[5]   MEROMORPHIC EXTENSIONS OF GENERALIZED ZETA-FUNCTIONS [J].
POLLICOTT, M .
INVENTIONES MATHEMATICAE, 1986, 85 (01) :147-164
[6]   THE THERMODYNAMIC FORMALISM FOR EXPANDING MAPS [J].
RUELLE, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (02) :239-262
[7]   SOME MATHEMATICAL PROBLEMS IN THE THEORY OF QUANTUM CHAOS [J].
SINAI, YG .
PHYSICA A, 1990, 163 (01) :197-204
[8]  
SINAI YG, MATH PROBLEMS THEORY
[9]  
[No title captured]
[10]  
[No title captured]