ML Estimation of a Stochastic Linear System with the EM Algorithm and Its Application to Speech Recognition

被引:146
|
作者
Digalakis, V. [1 ]
Rohlicek, J. R. [2 ]
Ostendorf, M. [3 ]
机构
[1] SRI Int, Menlo Pk, CA 94025 USA
[2] BBN Labs Inc, Cambridge, MA 02138 USA
[3] Boston Univ, Boston, MA 02215 USA
来源
IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING | 1993年 / 1卷 / 04期
关键词
D O I
10.1109/89.242489
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper we present a nontraditional approach to the problem of estimating the parameters of a stochastic linear system. The method is based on the Expectation-Maximization algorithm and can be considered as the continuous analog of the Baum-Welch estimation algorithm for hidden Markov models. We use the algorithm for training the parameters of a dynamical system model that we propose for better representing the spectral dynamics of speech for recognition. We assume that the observed feature vectors of a phone segment are the output of a stochastic linear dynamical system, and we show how the evolution of the dynamics as a function of the segment length can be modeled using alternative assumptions. We show on a phoneme classification task using the TIMIT database that our approach is the first effective use of an explicit model for statistical dependence between frames of speech.
引用
收藏
页码:431 / 442
页数:12
相关论文
共 50 条
  • [1] Recursive EM algorithm for stochastic ML DOA estimation
    Chung, PJ
    Böhme, JE
    2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3029 - 3032
  • [2] ML parameter estimation of a multiscale stochastic process using the EM algorithm
    Kannan, A
    Ostendorf, M
    Karl, WC
    Castañon, DA
    Fish, RK
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (06) : 1836 - 1840
  • [3] Observability quantification for linear stochastic system and its application in state estimation
    Xin, Tinghui
    Liang, Yuan
    Dong, Xiwang
    Hu, Sibo
    Li, Qingdong
    Ren, Zhang
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 906 - 911
  • [5] Estimation of mixtures of stochastic dynamic trajectories: Application to continuous speech recognition
    Afify, M
    Gong, YF
    Haton, JP
    COMPUTER SPEECH AND LANGUAGE, 1996, 10 (01): : 23 - 36
  • [6] ALGORITHM FOR SPOKEN SENTENCE RECOGNITION AND ITS APPLICATION TO SPEECH INPUT-OUTPUT SYSTEM
    SHIRAI, K
    FUJISAWA, H
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1974, SMC4 (05): : 475 - 479
  • [7] The stochastic EM algorithm: Estimation and asymptotic results
    Nielsen, SF
    BERNOULLI, 2000, 6 (03) : 457 - 489
  • [8] Stochastic EM Algorithm for Mixture Estimation on Manifolds
    Zanini, Paolo
    Said, Salem
    Cavalcante, Charles. C.
    Berthoumieu, Yannick
    2017 IEEE 7TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2017,
  • [9] Application and performance of an ML-EM algorithm in NEXT
    Simon, A.
    Lerche, C.
    Monrabal, F.
    Gomez-Cadenas, J. J.
    Alvarez, V.
    Azevedo, C. D. R.
    Benlloch-Rodriguez, J. M.
    Borges, F. I. G. M.
    Botas, A.
    Carcel, S.
    Carrion, J. V.
    Cebrian, S.
    Conde, C. A. N.
    Diaz, J.
    Diesburg, M.
    Escada, J.
    Esteve, R.
    Felkai, R.
    Fernandes, L. M. P.
    Ferrario, P.
    Ferreira, A. L.
    Freitas, E. D. C.
    Goldschmidt, A.
    Gonzalez-Diaz, D.
    Gutierrez, R. M.
    Hauptman, J.
    Henriques, C. A. O.
    Hernandez, A. I.
    Hernando Morata, J. A.
    Herrero, V.
    Jones, B. J. P.
    Labarga, L.
    Laing, A.
    Lebrun, P.
    Liubarsky, I.
    Lopez-March, N.
    Losada, M.
    Martin-Albo, J.
    Martinez-Lema, G.
    Martinez, A.
    McDonald, A. D.
    Monteiro, C. M. B.
    Mora, F. J.
    Moutinho, L. M.
    Munoz Vidal, J.
    Musti, M.
    Nebot-Guinot, M.
    Novella, P.
    Nygren, D. R.
    Palmeiro, B.
    JOURNAL OF INSTRUMENTATION, 2017, 12
  • [10] DEVELOPMENT OF WALSH LINEAR CODING AND ITS APPLICATION TO SPEECH RECOGNITION
    FELDMAN, FA
    HAQUE, T
    SPEECH COMMUNICATION, 1991, 10 (01) : 91 - 97