LOWEST POINT OF THE CONTINUOUS SPECTRUM AS A BIFURCATION POINT

被引:13
作者
KUPPER, T
机构
[1] Mathematisches Institut der Universität zu Köln, D-5000 Cologne 41
关键词
D O I
10.1016/0022-0396(79)90005-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a class of monotone differential operators we show that the lowest point of the continuous spectrum of the linearization is a bifurcation point. By the method of upper and lower solutions we prove the existence of a global branch of positive solutions. © 1979.
引用
收藏
页码:212 / 217
页数:6
相关论文
共 12 条
[1]   A BRANCH OF POSITIVE SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
BAZLEY, N ;
ZWAHLEN, B .
MANUSCRIPTA MATHEMATICA, 1970, 2 (04) :365-&
[2]   BIFURCATION WHEN THE LINEARIZED PROBLEM HAS NO EIGENVALUES [J].
CHIAPPINELLI, R ;
STUART, CA .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 30 (03) :296-307
[3]   DIFFERENTIAL EQUATIONS WITH NON-OSCILLATORY EIGENFUNCTIONS [J].
HARTMAN, P .
DUKE MATHEMATICAL JOURNAL, 1948, 15 (03) :697-709
[4]  
HEINZ HP, 1976, MANUSCRIPTA MATH, V15, P105
[5]  
KRAUSE U, 1977, THESIS U KOLN
[6]  
PIMBLEY GH, 1969, LECTURE NOTES MATH
[7]  
Rabinowitz P. H., 1971, CONTRIBUTIONS NONLIN, P11
[9]   BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
SCHRADER, KW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1967, 3 (03) :403-&
[10]   SOLUTIONS OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
SCHRADER, KW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1968, 4 (04) :510-&