WEAK TYPE (1, 1) ESTIMATES FOR HEAT KERNEL MAXIMAL FUNCTIONS ON LIE-GROUPS

被引:33
作者
COWLING, M
GAUDRY, G
GIULINI, S
MAUCERI, G
机构
关键词
D O I
10.2307/2001548
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Lie group G with left-invariant Haar measure and associated Lebesgue spaces L(p)(G), we consider the heat kernels {p(t)}t > 0 arising from a right-invariant Laplacian DELTA on G: that is, u(t, .) = p(t) *f solves the heat equation (partial/partial-t - DELTA)u = 0 with initial condition u(0, .) = f(.). We establish weak-type (1, 1) estimates for the maximal operator M (Mf = sup(t > 0) \p(t)*f\) and for related Hardy-Littlewood maximal operators in a variety of contexts, namely for groups of polynomial growth and for a number of classes of Iwasawa An groups. We also study the "local" maximal operator M0 (M0f = sup0 < t < 1 \p(t)* f\) and related Hardy-Littlewood operators for all Lie groups.
引用
收藏
页码:637 / 649
页数:13
相关论文
共 12 条
[1]   MULTIPLICATORS ON CERTAIN SYMMETRICAL SPACES [J].
ANKER, JP ;
LOHOUE, N .
AMERICAN JOURNAL OF MATHEMATICS, 1986, 108 (06) :1303-1354
[2]  
Dunford N., 1957, LINEAR OPERATORS, V1
[3]   SPHERICAL FUNCTIONS ON A REAL SEMISIMPLE LIE GROUP - METHOD OF REDUCTION TO THE COMPLEX CASE [J].
FLENSTEDJENSEN, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1978, 30 (01) :106-146
[4]  
Helgason S, 1984, PURE APPL MATH, V113
[5]  
Hille E., 1957, C PUBLICATIONS, V31
[6]   HYPOELLIPTIC 2ND ORDER DIFFERENTIAL EQUATIONS [J].
HORMANDE.L .
ACTA MATHEMATICA UPPSALA, 1967, 119 (3-4) :147-&
[7]  
HULANICKI A, 1974, COLLOQ MATH, V31, P259
[8]  
Jenkins J., 1973, J FUNCTIONAL ANAL, V12, P113, DOI DOI 10.1016/0022-1236(73)90092-X
[9]   LONG-TIME ESTIMATES FOR THE HEAT KERNEL ASSOCIATED WITH A UNIFORMLY SUBELLIPTIC SYMMETRIC 2ND-ORDER OPERATOR [J].
KUSUOKA, S ;
STROOCK, D .
ANNALS OF MATHEMATICS, 1988, 127 (01) :165-189
[10]   THE RESOLVENTS OF DELTA ON NON-COMPACT-TYPE SYMMETRIC-SPACES [J].
LOHOUE, N ;
RYCHENER, T .
COMMENTARII MATHEMATICI HELVETICI, 1982, 57 (03) :445-468