ANALYSIS OF A NEW FINITE-DIFFERENCE SCHEME FOR THE LINEAR ADVECTION-DIFFUSION EQUATION

被引:13
|
作者
MICKENS, RE
机构
[1] Clark Atlanta Univ, Atlanta, United States
关键词
Fluid Dynamics;
D O I
10.1016/0022-460X(91)90768-F
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:342 / 344
页数:3
相关论文
共 50 条
  • [21] A study on a second order finite difference scheme for fractional advection-diffusion equations
    Vong, Seakweng
    Shi, Chenyang
    Lyu, Pin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (02) : 493 - 508
  • [22] Weighted finite difference techniques for the one-dimensional advection-diffusion equation
    Dehghan, M
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 307 - 319
  • [23] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Farshid Mirzaee
    Khosro Sayevand
    Shadi Rezaei
    Nasrin Samadyar
    Iranian Journal of Science and Technology, Transactions A: Science, 2021, 45 : 607 - 617
  • [24] HIGH-ORDER FINITE DIFFERENCE SCHEMES FOR SOLVING THE ADVECTION-DIFFUSION EQUATION
    Sari, Murat
    Gurarslan, Gurhan
    Zeytinoglu, Asuman
    MATHEMATICAL & COMPUTATIONAL APPLICATIONS, 2010, 15 (03): : 449 - 460
  • [25] High-order finite difference schemes for solving the advection-diffusion equation
    Sari, Murat
    Gürarslan, Gürhan
    Zeytinoǧlu, Asuman
    Mathematical and Computational Applications, 2010, 15 (03) : 449 - 460
  • [26] Finite Difference and Spline Approximation for Solving Fractional Stochastic Advection-Diffusion Equation
    Mirzaee, Farshid
    Sayevand, Khosro
    Rezaei, Shadi
    Samadyar, Nasrin
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (02): : 607 - 617
  • [27] Approximation of stochastic advection-diffusion equation using compact finite difference technique
    Bishehniasar, M.
    Soheili, A. R.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2013, 37 (A3): : 327 - 333
  • [28] Optimal and near-optimal advection-diffusion finite-difference schemes III. Black-Scholes equation
    Smith, R
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1997): : 1019 - 1028
  • [29] FINITE-DIFFERENCE METHODS FOR SOLVING THE TWO-DIMENSIONAL ADVECTION DIFFUSION EQUATION
    NOYE, BJ
    TAN, HH
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1989, 9 (01) : 75 - 98
  • [30] High accuracy scheme for advection-diffusion equation of pollutants
    Zheng, Yong-Hong
    Shen, Yong-Ming
    Wang, Li-Sheng
    Wu, Chao
    2002, China Water Power Press