Elliptic Matrix Representations of Elliptic Biquaternions and Their Applications

被引:0
作者
Ozen, Kahraman Esen [1 ]
Tosun, Murat [1 ]
机构
[1] Sakarya Univ, Dept Math, TR-54187 Sakarya, Turkey
来源
INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY | 2018年 / 11卷 / 02期
关键词
Complex quaternions; Hamilton matrices; Matrix representations; Elliptic biquaternions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this study, we obtain the 4 x 4 elliptic matrix representations of elliptic biquaternions with the aid of the left and right Hamilton operators. Afterwards, we show that the space of 4 x 4 matrices generated by left Hamilton operator is isomorphic to the space of elliptic biquaternions. Then, we study the De-Moivre's and Euler formulas for the matrices of this matrix space. Additionally, the powers of these matrices are obtained with the aid of the De-Moivre's formula.
引用
收藏
页码:96 / 103
页数:8
相关论文
共 18 条
[1]   HAMILTON OPERATORS AND DUAL-NUMBER-QUATERNIONS IN SPATIAL KINEMATICS [J].
AGRAWAL, OP .
MECHANISM AND MACHINE THEORY, 1987, 22 (06) :569-575
[2]  
Akyigit M, 2015, J ADV RES APPL MATH, V7, P26
[3]   De Moivre's formula for quaternions [J].
Cho, E .
APPLIED MATHEMATICS LETTERS, 1998, 11 (06) :33-35
[4]   Matrix representation of quaternions [J].
Farebrother, RW ;
Gross, J ;
Troschke, SO .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 362 :251-255
[5]   Quaternions: further contributions to a matrix oriented approach [J].
Gross, J ;
Trenkler, G ;
Troschke, SO .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2001, 326 (1-3) :205-213
[6]  
Gungor M.A., 2011, SCI MAGNA, V7, P1
[7]  
Hamilton W. R., 1853, LECT QUATERNIONS
[8]  
Harkin A.A., 2004, MATH MAG, V77, P118, DOI [10.1080/0025570X.2004.11953236, DOI 10.1080/0025570X.2004.11953236]
[9]  
Jafari M., 2016, TWMS J PURE APPL MAT, DOI [10.13140/RG.2.1.3565.2321, DOI 10.13140/RG.2.1.3565.2321]
[10]  
Jafari M, 2011, JP J ALGEBR NUMBER T, V21, P57