RINGS IN WHICH MINIMAL LEFT IDEALS ARE PROJECTIVE

被引:30
作者
GORDON, R
机构
[1] The University of Utah, Salt lake city, UT
关键词
D O I
10.2140/pjm.1969.31.679
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an associative ring with identity. Then the left socle of R is a direct summand of R as a right R-module if and only if it is projective as a left R-module and contains no infinite sets of orthogonal idempotents. This implies, for example, that a ring with finitely generated left socle and no nilpotent minimal left ideals is a ring direct sum of a semisimple artinian ring and a ring with zero left socle. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:679 / &
相关论文
共 8 条
[1]  
BASS H, 1960, T AM MATH SOC, V95, P466, DOI 10.1090/S0002-9947-1960-0157984-8
[2]   STRUCTURE OF CERTAIN ARTINIAN RINGS WITH ZERO SINGULAR IDEAL [J].
COLBY, RR ;
RUTTER, EA .
JOURNAL OF ALGEBRA, 1968, 8 (02) :156-&
[3]  
Curtis C.W., 1962, REPRESENTATION THEOR
[4]   RINGS FAITHFULLY REPRESENTED ON THEIR LEFT SOCLE [J].
GORDON, R .
JOURNAL OF ALGEBRA, 1967, 7 (03) :303-&
[5]  
JACOBSON N, 1964, AM MATH SOC COLLOQ, V36
[6]  
LAMBEK J, 1966, LECTURES RINGS MODUL
[7]   SEMIPRIMARY RINGS OF GENERALIZED TRIANGULAR TYPE [J].
ZAKS, A .
JOURNAL OF ALGEBRA, 1968, 9 (01) :54-&
[8]  
ZARISKI O, 1960, COMMUTATIVE ALGEBRA, V2