A Framework of Protein-Drug Association for Malaria by Text Data Mining of Biomedical Literature

被引:0
作者
Selvaraj, Bhanumathi [1 ]
Periyasamy, Sakthivel [2 ]
机构
[1] Sathyabama Univ, Dept Comp Sci & Engn, Madras 600119, Tamil Nadu, India
[2] Anna Univ, Dept Elect & Commun Engn, Madras 600025, Tamil Nadu, India
来源
RESEARCH JOURNAL OF PHARMACEUTICAL BIOLOGICAL AND CHEMICAL SCIENCES | 2016年 / 7卷 / 04期
关键词
Text data mining; biomedical literature; protein-drug association; malaria;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The protein-drug association, the finding of the important relationship between diseases related proteins and drugs, provides useful information for the discovery of new drugs. In this paper,.we first time propose a new framework to find an association of, protein-drug for human malaria parasite Plasmodium falop arum using text data mining approaches. The framework begins with three phases of text data mining: (1) data collection from MEDLINE, UniprotKB and MeSH databases; (2) data pre-processing such as tokenization, stop word removal and stemming; (3) data analysis to retrieve actual information and extract useful information. Finally, regularized log-odds function is used to create an association matrix between Plasmodium fakiparum proteins and their drug terms. The proposed framework could be useful for a new drug candidate discovery for malaria.
引用
收藏
页码:1493 / 1499
页数:7
相关论文
共 26 条
  • [1] Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research
    Bravo, Alex
    Pinero, Janet
    Queralt-Rosinach, Nuria
    Rautschka, Michael
    Furlong, Laura I.
    [J]. BMC BIOINFORMATICS, 2015, 16
  • [2] Artemisinin resistance: current status and scenarios for containment
    Dondorp, Arjen M.
    Yeung, Shunmay
    White, Lisa
    Nguon, Chea
    Day, Nicholas P. J.
    Socheat, Duong
    von Seidlein, Lorenz
    [J]. NATURE REVIEWS MICROBIOLOGY, 2010, 8 (04) : 272 - 280
  • [3] Elumalai P, 2016, J CHEM INF MODEL
  • [4] Hearst M.A., 1999, P 37 ANN M ASS COMP, P3, DOI [DOI 10.3115/1034678.1034679, 10.3115/1034678.1034679]
  • [5] Katz L, 1953, PSYCHOMETRIKA, V18, P39
  • [6] A Study and Analysis of Gene Drug Association for Diabetic Gene - A Text Mining Approach
    Kirthika, B.
    Bhuvaneswari, V.
    [J]. 2014 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING APPLICATIONS (ICICA 2014), 2014, : 416 - 420
  • [7] Prediction of drug gene associations via ontological profile similarity with application to drug repositioning
    Kissa, Maria
    Tsatsaronis, George
    Schroeder, Michael
    [J]. METHODS, 2015, 74 : 71 - 82
  • [8] Systematic association of genes to phenotypes by genome and literature mining
    Korbel, JO
    Doerks, T
    Jensen, LJ
    Perez-Iratxeta, C
    Kaczanowski, S
    Hooper, SD
    Andrade, MA
    Bork, P
    [J]. PLOS BIOLOGY, 2005, 3 (05): : 815 - 825
  • [9] Discovering breast cancer drug candidates from biomedical literature
    Li, Jiao
    Zhu, Xiaoyan
    Chen, Jake Yue
    [J]. INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2010, 4 (03) : 241 - 255
  • [10] Liu Y, 2015, NUCLEIC ACIDS RES