UNICYCLIC GRAPHS WITH STRONG EQUALITY BETWEEN THE 2-RAINBOW DOMINATION AND INDEPENDENT 2-RAINBOW DOMINATION NUMBERS

被引:0
作者
Amjadi, J. [1 ]
Chellali, M. [2 ]
Falahat, M. [1 ]
Sheikholeslami, S. M. [1 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Univ Blida, Dept Math, LAMDA RO Lab, Blida, Algeria
关键词
2-rainbow domination number; independent; 2-rainbow; domination number; strong equality;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A 2-rainbow dominating function (2RDF) on a graph G = (V, E) is a function f from the vertex set V to the set of all subsets of the set {1, 2} such that for any vertex v is an element of V with f (v) = empty set the condition U-u is an element of N(v) f (u) = {1, 2} is fulfilled. A 2RDF f is independent (I2RDF) if no two vertices assigned nonempty sets are adjacent. The weight of a 2RDF f is the value omega(f) = Sigma(v is an element of v) vertical bar f (v)vertical bar. The 2-rainbow domination number gamma(r2) (G) (respectively, the independent 2-rainbow domination number i(r2)(G)) is the minimum weight of a 2RDF (respectively, I2RDF) on G. We say that gamma(r2) (G) is strongly equal to i(r2)(G) and denote by gamma(r2) (G) equivalent to i(r2)(G), if every 2RDF on G of minimum weight is an I2RDF. In this paper we characterize all unicyclic graphs G with gamma(r2)(G) equivalent to i(r2)(G).
引用
收藏
页码:1 / 11
页数:11
相关论文
共 14 条
[1]  
Amjadi J., B MALAYS MA IN PRESS
[2]  
Bresar B, 2008, TAIWAN J MATH, V12, P213
[3]   On the 2-rainbow domination in graphs [J].
Bresar, Bostjan ;
Sumenjak, Tadeja Kraner .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) :2394-2400
[4]  
Chellali M., J COMBIN MA IN PRESS
[5]   STRONG EQUALITY BETWEEN THE ROMAN DOMINATION AND INDEPENDENT ROMAN DOMINATION NUMBERS IN TREES [J].
Chellali, Mustapha ;
Rad, Nader Jafari .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) :337-346
[6]  
Dehgardi N., MAT VESNIK IN PRESS
[7]   New Bounds on the Rainbow Domination Subdivision Number [J].
Falahat, Mohyedin ;
Sheikholeslami, Seyed Mahmoud ;
Volkmann, Lutz .
FILOMAT, 2014, 28 (03) :615-622
[8]  
Haynes T. W., 1998, FUNDAMENTALS DOMINAT
[9]   Strong equality of domination parameters in trees [J].
Haynes, TW ;
Henning, MA ;
Slater, PJ .
DISCRETE MATHEMATICS, 2003, 260 (1-3) :77-87
[10]  
Haynes TW, 1998, NETWORKS, V32, P199, DOI 10.1002/(SICI)1097-0037(199810)32:3<199::AID-NET4>3.0.CO