BESOV SPACES AND SELF-SIMILAR SOLUTIONS FOR NONLINEAR EVOLUTION EQUATIONS

被引:0
作者
Miao Changxing [1 ]
Zhang Bo [2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[2] Chinese Acad Sci, Inst Appl Math, Beijing 100080, Peoples R China
[3] Coventry Univ, Sch MIS, Coventry CV1 5FB, W Midlands, England
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2006年 / 19卷 / 01期
关键词
Strichartz estimates; admissible triplet; self-similar solution; Besov spaces; evolution equations; well-posedness;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of global self-similar solutions for the heat and convection-diffusion equations. This we do in some homogeneous Besov spaces using the theory of Besov spaces and the Strichartz estimates. Further, the structure of the self-similar solutions has also been established by using an equivalent norm for Besov spaces.
引用
收藏
页码:26 / 47
页数:22
相关论文
共 33 条
[1]   SELF-SIMILAR SOLUTIONS OF A CONVECTION DIFFUSION EQUATION AND RELATED SEMILINEAR ELLIPTIC PROBLEMS [J].
AGUIRRE, J ;
ESCOBEDO, M ;
ZUAZUA, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :139-157
[2]  
Bergh J., 1976, INTERPOLITAN SPACES
[3]   Self-similar solutions for Navier-Stokes equations in R(3) [J].
Cannone, M ;
Planchon, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (1-2) :179-193
[4]  
Cannone M, 1995, PARAPRODUITS NAVIER
[5]   Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations [J].
Cazenave, T ;
Weissler, FB .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (01) :83-120
[6]   More self-similar solutions of the nonlinear Schrodinger equation [J].
Cazenave, Thierry ;
Weissler, Fred B. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 1998, 5 (03) :355-365
[7]   VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) :1103-1133
[8]   LARGE TIME BEHAVIOR FOR CONVECTION-DIFFUSION EQUATIONS IN RN [J].
ESCOBEDO, M ;
ZUAZUA, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :119-161
[9]  
FUJITA H, 1966, J FAC SCI U TOKYO 1, V13, P109
[10]   SOLUTIONS FOR SEMILINEAR PARABOLIC EQUATIONS IN LP AND REGULARITY OF WEAK SOLUTIONS OF THE NAVIER-STOKES SYSTEM [J].
GIGA, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 62 (02) :186-212