AN EXISTENCE THEOREM FOR CYCLIC TRIPLEWHIST TOURNAMENTS

被引:16
作者
ANDERSON, I
COHEN, SD
FINIZIO, NJ
机构
[1] UNIV GLASGOW,DEPT MATH,GLASGOW G12 8QW,LANARK,SCOTLAND
[2] UNIV RHODE ISL,DEPT MATH,KINGSTON,RI 02881
关键词
D O I
10.1016/0012-365X(94)00186-M
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that a Z-cyclic triplewhist tournament TWh(v) exists whenever v = p(1)(alpha 1) ... p(r)(alpha r) where 1 the primes p(i) are = 5(mod 8), p(i) greater than or equal to 29. The method of construction uses the existence of a primitive root omega of each such p(i) (not equal 61) such that omega(2) +/- omega + 1 are both squares (mod p(i)).
引用
收藏
页码:31 / 41
页数:11
相关论文
共 9 条
  • [1] Anderson, Finizio, An infinite class of cyclic triplewhist tournaments, Congr. Numer., 91, pp. 7-18, (1992)
  • [2] Anderson, Finizio, Cyclically resolvable designs and triplewhist tournaments, Journal of Combinatorial Designs, 1, pp. 347-358, (1993)
  • [3] Baker, Factorization of graphs, Doctoral Thesis, (1975)
  • [4] Cohen, Primitive roots and powers among values of polynomials over finite fields, Journal fur die reine und angewandte Mathematik (Crelle's Journal), 350, pp. 137-151, (1984)
  • [5] Cohen, Primitive elements and polynomials: existence results, Finite fields, coding theory, and advances in communications and computing, pp. 43-55, (1993)
  • [6] Finizio, Orbits of cyclic Wh(v) of Z<sub>n</sub>-type, Congr. Numer., 82, pp. 15-28, (1991)
  • [7] Jungnickel, Finite fields
  • [8] Structure and Arithmetics, (1993)
  • [9] Lidl, Niederreiter, Finite fields, Encyclopaedia of Mathematics, 20, (1983)