PROTON MICROPROBE DETERMINED PARTITIONING OF RB, SR, BA, Y, ZR, NB AND TA BETWEEN EXPERIMENTALLY PRODUCED AMPHIBOLES AND SILICATE MELTS WITH VARIABLE F CONTENT

被引:183
作者
ADAM, J [1 ]
GREEN, TH [1 ]
SIE, SH [1 ]
机构
[1] CSIRO,DIV EXPLORAT GEOSCI,N RYDE,NSW 2113,AUSTRALIA
基金
澳大利亚研究理事会;
关键词
D O I
10.1016/0009-2541(93)90060-V
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A proton microprobe was used to measure partition coefficients for Rb, Sr, Ba, Y, Zr, Nb and Ta between experimentally produced amphiboles and hydrous basaltic melts. A limited amount of data was also obtained for the distribution of trace elements in clinopyroxene and mica. Partition coefficients for trace elements in amphibole and basanite melts are (at 1sigma): Rb 0.34 +/- 0.14; Sr 0.33 +/- 0.07; Ba 0.46 +/- 0.16; Y 0.6 +/- 0.2; Ti 0.95 +/- 0.19; Zr 0.25 +/- 0.06; Nb 0.08 +/- 0.01; and Ta 0.09 +/- 0.03. Only small, generally non-systematic differences in these values are observed with variation in pressure (10-20 kbar) and temperature (1000-1050-degrees-C), but large differences accompany changes in melt composition and F content. For a (F-free) basaltic andesite melt, at 20 kbar and 950-degrees-C, amphibole/melt distribution coefficients are: Rb 0.07 +/- 0.01; Sr 0.35 +/- 0.03; Y 1.3 +/- 0.1; Ti 1.75 +/- 0.12; Zr 0.35 +/- 0.06; Nb 0.21 +/- 0.01; and Ta 0.19 +/- 0.02. The data support proposals that residual amphibole in mantle source regions for some nephelinites explains their relatively high HFSE/LILE ratios. In contrast, the data do not favour amphibole as the cause of characteristically low HFSE/LILE observed in mantle-derived island arc basalts. The increases in partition coefficients (excepting for Rb) for the more SiO2-rich melt are consistent with similar trends observed in phenocryst-matrix pairs from volcanic rocks. The compositional dependence of HFSE partition coefficients increases with increasing field strength. This trend can be related to steric effects within polymerised aluminosilicate units of the melt phase. Amphiboles grown from F-enriched melts are relatively depleted in TiO2, Al2O3, CaO and incompatible trace elements. These effects are only large, however, at high F concentrations (> 2 wt%). The effects of F on incompatible elements will be least in melts containing high concentrations of Al2O3, FeO, MgO and CaO. For these reasons, it is unlikely that concentrations of HFSE and other incompatible elements in natural magmas (with the possible exception of some rare F- and SiO2-rich magmas) are significantly affected by F.
引用
收藏
页码:29 / 49
页数:21
相关论文
共 72 条
[2]  
ALLEN JC, 1978, AM MINERAL, V63, P1074
[3]   FLUORINE GEOCHEMISTRY OF BASALTIC ROCKS FROM CONTINENTAL AND OCEANIC REGIONS AND PETROGENETIC APPLICATION [J].
AOKI, K ;
ISHIWAKA, K ;
KANISAWA, S .
CONTRIBUTIONS TO MINERALOGY AND PETROLOGY, 1981, 76 (01) :53-59
[4]   SOURCE COMPONENT MIXING IN THE REGIONS OF ARC MAGMA GENERATION [J].
ARCULUS, RJ ;
POWELL, R .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1986, 91 (B6) :5913-5926
[5]   HIGH-PRESSURE EXPERIMENTAL STUDIES ON A KATUNGITE AND THEIR BEARING ON THE GENESIS OF SOME POTASSIUM-RICH MAGMAS OF THE WEST BRANCH OF THE AFRICAN RIFT [J].
ARIMA, M ;
EDGAR, AD .
JOURNAL OF PETROLOGY, 1983, 24 (02) :166-187
[6]   FLUORINE AND CHLORINE IN PERALKALINE LIQUIDS AND NEED FOR MAGMA GENERATION IN AN OPEN SYSTEM [J].
BAILEY, DK ;
MACDONALD, R .
MINERALOGICAL MAGAZINE, 1975, 40 (312) :405-414
[7]   MANTLE METASOMATISM - CONTINUING CHEMICAL-CHANGE WITHIN THE EARTH [J].
BAILEY, DK .
NATURE, 1982, 296 (5857) :525-530
[8]   EMPIRICAL CORRECTION FACTORS FOR ELECTRON MICROANALYSIS OF SILICATES AND OXIDES [J].
BENCE, AE ;
ALBEE, AL .
JOURNAL OF GEOLOGY, 1968, 76 (04) :382-&
[9]   MORB ALTERATION - RARE-EARTH ELEMENT NON-RARE-EARTH HYGROMAGMAPHILE ELEMENT FRACTIONATION [J].
BIENVENU, P ;
BOUGAULT, H ;
JORON, JL ;
TREUIL, M ;
DMITRIEV, L .
CHEMICAL GEOLOGY, 1990, 82 (1-2) :1-14
[10]   APPARATUS FOR PHASE-EQUILIBRIUM MEASUREMENTS AT PRESSURES UP TO 50-KILOBARS AND TEMPERATURES UP TO 1750-DEGREES-C [J].
BOYD, FR ;
ENGLAND, JL .
JOURNAL OF GEOPHYSICAL RESEARCH, 1960, 65 (02) :741-748