AN APPROXIMATE MAXIMUM-LIKELIHOOD-ESTIMATION FOR NON-GAUSSIAN NONMINIMUM PHASE MOVING AVERAGE PROCESSES

被引:30
作者
LII, KS [1 ]
ROSENBLATT, M [1 ]
机构
[1] UNIV CALIF SAN DIEGO,LA JOLLA,CA 92093
关键词
APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATES; ASYMPTOTIC NORMALITY; MOVING AVERAGE; NONMINIMUM PHASE; NONINVERTIBLE; NON-GAUSSIAN;
D O I
10.1016/0047-259X(92)90037-G
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
An approximate maximum likelihood procedure is proposed for the estimation of parameters in possibly nonminimum phase (noninvertible) moving average processes driven by independent and identically distributed non-Gaussian noise. Under appropriate conditions, parameter estimates that are solutions of likelihood-like equations are consistent and are asymptotically normal. A simulation study for MA(2) processes illustrates the estimation procedure. © 1992.
引用
收藏
页码:272 / 299
页数:28
相关论文
共 15 条
[1]  
[Anonymous], 1985, STATIONARY SEQUENCES
[2]   PHASE AND AMPLITUDE RECOVERY FROM BISPECTRA [J].
BARTELT, H ;
LOHMANN, AW ;
WIRNITZER, B .
APPLIED OPTICS, 1984, 23 (18) :3121-3129
[3]  
Basor E., 1980, J OPERAT THEOR, V3, P23
[4]  
BOTTCHER A, 1990, ANAL TOEPLITZ OPERAT
[5]   MAXIMUM-LIKELIHOOD-ESTIMATION FOR NONCAUSAL AUTOREGRESSIVE PROCESSES [J].
BREIDT, FJ ;
DAVIS, RA ;
LII, KS ;
ROSENBLATT, M .
JOURNAL OF MULTIVARIATE ANALYSIS, 1991, 36 (02) :175-198
[6]  
DONOHO D, 1981, APPL TIME SERIES ANA, P565
[7]   ON ADAPTIVE ESTIMATION IN STATIONARY ARMA PROCESSES [J].
KREISS, JP .
ANNALS OF STATISTICS, 1987, 15 (01) :112-133
[8]  
Lehmann EH., 1983, THEORY POINT ESTIMAT
[9]   DECONVOLUTION AND ESTIMATION OF TRANSFER-FUNCTION PHASE AND COEFFICIENTS FOR NON-GAUSSIAN LINEAR-PROCESSES [J].
LII, KS ;
ROSENBLATT, M .
ANNALS OF STATISTICS, 1982, 10 (04) :1195-1208
[10]  
LOHMANN A, 1983, APPL OPTICS, V23, P3121