ON ESTIMATION OF A MATRIX OF NORMAL MEANS WITH UNKNOWN COVARIANCE-MATRIX

被引:31
作者
KONNO, Y [1 ]
机构
[1] UNIV TSUKUBA,SAKURA,IBARAKI 305,JAPAN
关键词
MINIMAX ESTIMATION; STEIN ESTIMATOR; BARANCHIK-TYPE ESTIMATOR;
D O I
10.1016/0047-259X(91)90090-O
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let X be an m × p matrix normally distributed with matrix of means B and covariance matrix Im ⊗ Σ, where Σ is a p × p unknown positive definite matrix. This paper studies the estimation of B relative to the invariant loss function tr Σ-1( B ̂-B)t ( B ̂-B). New classes of invariant minimax estimators are proposed for the case p > m + 1, which are multivariate extensions of the estimators of Stein and Baranchik. The method involves the unbiased estimation of the risk of an invariant estimator which depends on the eigenstructure of the usual F = XS-1Xt matrix, where S: p × p follows a Wishart matrix with n degrees of freedom and mean nΣ. © 1991.
引用
收藏
页码:44 / 55
页数:12
相关论文
共 8 条