A PRECISE ESTIMATE OF THE RATE OF CONVERGENCE IN THE CENTRAL-LIMIT-THEOREM IN HILBERT-SPACE

被引:4
作者
ZALESSKII, BA
SAZONOV, VV
ULYANOV, VV
机构
[1] VA STEKLOV MATH INST,MOSCOW,USSR
[2] MV LOMONOSOV STATE UNIV,MOSCOW 117234,USSR
来源
MATHEMATICS OF THE USSR-SBORNIK | 1991年 / 68卷 / 02期
关键词
D O I
10.1070/SM1991v068n02ABEH002110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let [GRAPHICS] be the normed sum of independent identically distributed random variables X(i) with values in a separable Hilbert space H. Denote by V the covariance operator of X, and let Y be an H-valued (0, sigma-2V) Gaussian random variable. The authors prove that there exist an absolute constant c such that for any a is-a-member-of H and r greater-than-or-equal-to O [GRAPHICS] where sigma-1(2) greater-than-or-equal-to sigma-2(2) greater-than-or-equal-to ... are the eigenvalues of V. Up to the value of c, this estimate is unimprovable in general.
引用
收藏
页码:453 / 482
页数:30
相关论文
共 16 条
[1]   ASYMPTOTIC EXPANSIONS FOR BIVARIATE VON MISES FUNCTIONALS [J].
GOTZE, F .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1979, 50 (03) :333-355
[2]  
NAGAEV SV, 1983, LECT NOTES MATH, V1021, P461
[3]  
NAGAEV SV, 1988, DOKL AKAD NAUK SSSR+, V303, P37
[4]  
NAGAEV SV, 1985, TEOR VEROYA PRIMEN, V30, P19
[5]  
Petrov V. V., 1987, LIMIT THEOREMS SUMS
[6]  
PINELIS IF, 1980, MAT ZAMETKI, V27, P953
[7]   ASYMPTOTICALLY PRECISE ESTIMATE OF THE ACCURACY OF GAUSSIAN APPROXIMATION IN HILBERT-SPACE [J].
SAZONOV, VV ;
ULYANOV, VV ;
ZALESSKII, BA .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (02) :304-330
[8]  
SAZONOV VV, 1988, T MAT I STEKLOVA, V182, P57
[9]  
SAZONOV VV, 1987, 4TH P VILN C, V2, P561
[10]  
SAZONOV VV, 1981, LECTURE NOTES MATH, V879