Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration

被引:0
|
作者
Huang, Yibing [1 ]
Zhang, Zhijun [1 ]
Bi, Fei [1 ]
Tang, Huilin [1 ]
Chen, Jiahao [1 ]
Huo, Fangjun [2 ]
Chen, Jie [1 ]
Lan, Tingting [1 ]
Qiao, Xiangchen [3 ]
Sima, Xiutian [4 ]
Guo, Weihua [1 ,5 ]
机构
[1] Sichuan Univ, West China Hosp Stomatol, Natl Clin Res Ctr Oral Dis, State Key Lab Oral Dis,Dept Pediat Dent, Chengdu 610041, Peoples R China
[2] Sichuan Univ, West China Hosp Stomatol, Engn Res Ctr Oral Translat Med, Natl Engn Lab Oral Regenerat Med,State Key Lab Ora, Chengdu 610041, Peoples R China
[3] Chengdu Guardental Technol Ltd Corp, Chengdu 610041, Peoples R China
[4] Sichuan Univ, West China Hosp, Dept Neurosurg, Chengdu 610041, Peoples R China
[5] Kunming Med Univ, Affiliated Hosp Stomatol, Sch Stomatol, Yunnan Key Lab Stomatol, Kunming 650000, Peoples R China
关键词
3D printing; personalized bioroot regeneration; treated dentin matrix;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Recent advances in 3D printing offer a prospective avenue for producing transplantable human tissues with complex geometries; however, the appropriate 3D-printed scaffolds possessing the biological compatibility for tooth regeneration remain unidentified. This study proposes a personalized scaffold of multiple bioactivities, including induction of stem cell proliferation and differentiation, biomimetic mineralization, and angiogenesis. A brand-new bioink system comprising a biocompatible and biodegradable polymer is developed and reinforced with extracellular matrix generated from dentin tissue (treated dentin matrix, TDM). Adding TDM optimizes physical properties including microstructure, hydrophilicity, and mechanical strength of the scaffolds. Proteomics analysis reveals that the released proteins of the 3D-printed TDM scaffolds relate to multiple biological processes and interact closely with each other. Additionally, 3D-printed TDM scaffolds establish a favorable microenvironment for cell attachment, proliferation, and differentiation in vitro. The 3D-printed TDM scaffolds are proangiogenic and facilitate whole-thickness vascularization of the graft in a subcutaneous model. Notably, the personalized TDM scaffold combined with dental follicle cells mimics the anatomy and physiology of the native tooth root three months after in situ transplantation in beagles. The remarkable in vitro and in vivo outcomes suggest that the 3D-printed TDM scaffolds have multiple bioactivities and immense clinical potential for tooth-loss therapy.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Personalized 3D-Printed Scaffolds with Multiple Bioactivities for Bioroot Regeneration
    Huang, Yibing
    Zhang, Zhijun
    Bi, Fei
    Tang, Huilin
    Chen, Jiahao
    Huo, Fangjun
    Chen, Jie
    Lan, Tingting
    Qiao, Xiangchen
    Sima, Xiutian
    Guo, Weihua
    ADVANCED HEALTHCARE MATERIALS, 2023, 12 (28)
  • [2] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V. P.
    Nair, Prabha D.
    BIOMEDICAL MATERIALS, 2021, 16 (05)
  • [3] Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration
    Karanth, Divakar
    Song, Kaidong
    Macey, L. Martin
    Meyer, Delaney R.
    Dolce, Calogero
    Huang, Yong
    Holliday, L. Shannon
    ORTHODONTICS & CRANIOFACIAL RESEARCH, 2023, 26 : 188 - 195
  • [4] 3D-printed biphasic scaffolds for the simultaneous regeneration of osteochondral tissues
    Natarajan, Amrita
    Sivadas, V.P.
    Nair, Prabha D.
    Biomedical Materials (Bristol), 2021, 16 (05):
  • [5] 3D-Printed Piezoelectric Scaffolds with Shape Memory Polymer for Bone Regeneration
    Li, Guanlin
    Li, Zehao
    Min, Yajun
    Chen, Shilu
    Han, Ruijia
    Zhao, Zheng
    SMALL, 2023, 19 (40)
  • [6] 3D-printed hydroxyapatite microspheres reinforced PLGA scaffolds for bone regeneration
    Wei, Jiawei
    Yan, Yan
    Gao, Jing
    Li, Yubao
    Wang, Ruili
    Wang, Jiexin
    Zou, Qin
    Zuo, Yi
    Zhu, Meifang
    Li, Jidong
    BIOMATERIALS ADVANCES, 2022, 133
  • [7] 3D-Printed Composite Bioceramic Scaffolds for Bone and Cartilage Integrated Regeneration
    Xu, Nanjian
    Lu, Dezhi
    Qiang, Lei
    Liu, Yihao
    Yin, Dalin
    Wang, Zhiyong
    Luo, Yongxiang
    Yang, Chen
    Ma, Zhenjiang
    Ma, Hui
    Wang, Jinwu
    ACS OMEGA, 2023, 8 (41): : 37918 - 37926
  • [8] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [9] 3D-Printed Antibacterial Scaffolds for the Regeneration of Alveolar Bone in Severe Periodontitis
    Theodoridis, Konstantinos
    Arampatzis, Athanasios S.
    Liasi, Georgia
    Tsalikis, Lazaros
    Barmpalexis, Panagiotis
    Christofilos, Dimitrios
    Assimopoulou, Andreana N.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (23)
  • [10] Multiscale porosity in mesoporous bioglass 3D-printed scaffolds for bone regeneration
    Gomez-Cerezo, M. Natividad
    Pena, Juan
    Ivanovski, Saso
    Arcos, Daniel
    Vallet-Regi, Maria
    Vaquette, Cedryck
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 120