Towards mining scientific discourse using argumentation schemes

被引:15
作者
Green, Nancy L. [1 ]
机构
[1] Univ N Carolina, Greensboro, NC 27402 USA
关键词
Argument mining; argumentation mining; argumentation schemes; scientific discourse; scientific discovery; discovery dialogue;
D O I
10.3233/AAC-180038
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The dominant approach to argument mining has been to treat it as a machine learning problem based upon superficial text features, and to treat the relationships between arguments as either support or attack. However, accurately summarizing argumentation in scientific research articles requires a deeper understanding of the text and a richer model of relationships between arguments. First, this paper presents an argumentation scheme-based approach to mining a class of biomedical research articles. Argumentation schemes implemented as logic programs are formulated in terms of semantic predicates that could be obtained from a text by use of biomedical/biological natural language processing tools. The logic programs can be used to extract the underlying scheme name, premises, and implicit or explicit conclusion of an argument. Then this paper explores how arguments in a research article occur within a narrative of scientific discovery, how they are related to each other, and some implications.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 37 条
[1]   Concept annotation in the CRAFT corpus [J].
Bada, Michael ;
Eckert, Miriam ;
Evans, Donald ;
Garcia, Kristin ;
Shipley, Krista ;
Sitnikov, Dmitry ;
Baumgartner, William A., Jr. ;
Cohen, K. Bretonnel ;
Verspoor, Karin ;
Blake, Judith A. ;
Hunter, Lawrence E. .
BMC BIOINFORMATICS, 2012, 13
[2]   APPLICATIONS OF INDUCTIVE LOGIC PROGRAMMING [J].
BRATKO, I ;
MUGGLETON, S .
COMMUNICATIONS OF THE ACM, 1995, 38 (11) :65-70
[3]  
Bratko I.., 2001, PROLOG PROGRAMMING A
[4]   Generating Abstract Arguments: a Natural Language Approach [J].
Cabrio, Elena ;
Villata, Serena .
COMPUTATIONAL MODELS OF ARGUMENT, 2012, 245 :454-461
[5]   MutationFinder: a high-performance system for extracting point mutation mentions from text [J].
Caporaso, J. Gregory ;
Baumgartner, William A., Jr. ;
Randolph, David A. ;
Cohen, K. Bretonnel ;
Hunter, Lawrence .
BIOINFORMATICS, 2007, 23 (14) :1862-1865
[6]  
Cardie C., 2015, 2 WORKSH ARG MIN N A
[7]   Recognizing textual entailment: Rational, evaluation and approaches [J].
Dagan, Ido ;
Dolan, Bill ;
Magnini, Bernardo ;
Roth, Dan .
Natural Language Engineering, 2009, 15 (04) :i-xvii
[8]  
Green N., 2015, P 2015 INT WORKSH BI
[9]  
Green N.L., 2015, P 2 WORKSH ARG MIN N
[10]  
Green N.L., 2017, P 4 WORKSH ARG MIN E