A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE AND BERNOULLI POLYNOMIALS

被引:9
作者
Pathan, Mahmood A. [1 ]
Khan, Waseem A. [2 ]
机构
[1] KFRI, Ctr Math & Stat Sci, Trichur 680653, Kerala, India
[2] Integral Univ, Dept Math, Lucknow 226026, Uttar Pradesh, India
来源
MATEMATICHE | 2015年 / 70卷 / 01期
关键词
Hermite polynomials; Bernoulli polynomials; Hermite-Bernoulli polynomials; summation formulae; symmetric identities;
D O I
10.4418/2015.70.1.4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Phi((alpha))(n) (x,v) of degree n and order alpha introduced by Derre and Simsek. The concepts of Bernoulli numbers Bn, Bernoulli polynomials B-n (x), Bernoulli numbers B-n (a; b), generalized Bernoulli polynomials B-n (x; a; b; c) of Luo et al., Hermite-Bernoulli polynomials B-H(n) (x; y) of Dattoli et al. and B-H(n)(alpha) (x; y) of Pathan are generalized to the one B-H(n)(alpha) (x; y; a; b; c) which is called the generalized polynomials depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B-n, B-n (x), B-n (a; b), B-n (x; a; b; c) and B-H(n)(alpha) (x; y; a; b; c) are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials.
引用
收藏
页码:53 / 70
页数:18
相关论文
共 19 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]  
Andrews L.C., 1985, SPECIAL FUNCTIONS EN
[3]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[4]   Multidimensional extensions of the Bernoulli and Appell polynomials [J].
Bretti, G ;
Ricci, PE .
TAIWANESE JOURNAL OF MATHEMATICS, 2004, 8 (03) :415-428
[5]  
Cesarano G., 1999, REND MAT APPL, V19, P385
[6]   STIRLINGS SERIES AND BERNOULLI NUMBERS [J].
DEEBA, EY ;
RODRIGUEZ, DM .
AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (05) :423-426
[7]  
Dere R., 2011, ARXIV11101484V1MATHC
[8]  
Gessel J, 1989, AM MATH MONTHLY, V96, P364
[9]   Implicit summation formulae for Hermite and related polynomials [J].
Khan, Subuhi ;
Pathan, M. A. ;
Hassan, Nader Ali Makboul ;
Yasmin, Ghazala .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 344 (01) :408-416
[10]  
Luo Q.-M., 2003, INT J MATH MATH SCI, V2003, DOI [10.1155/S0161171203112070, DOI 10.1155/S0161171203112070]