GENERALIZED EQUIDISTANT CHEBYSHEV POLYNOMIALS AND ALEXANDER KNOT INVARIANTS

被引:1
作者
Pavlyuk, A. M. [1 ]
机构
[1] Nat Acad Sci Ukraine, Bogolyubov Inst Theoret Phys, 14b Metrolohichna Str, UA-03143 Kiev, Ukraine
来源
UKRAINIAN JOURNAL OF PHYSICS | 2018年 / 63卷 / 06期
关键词
Chebyshev polynomials; generalization; kind; hyperkind; equidistant coefficients; recurrence relation; knots and links; Alexander polynomial invariants;
D O I
10.15407/ujpe63.6.488
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce the generalized equidistant Chebyshev polynomials T-(k,T-h) of kind of hyperkind h, where k, h are positive integers. They are obtained by a generalization of standard and monic Chebyshev polynomials of the first and second kinds. This generalization is fulfilled in two directions. The horizontal generalization is made by introducing hyperkind h and expanding it to infinity. The vertical generalization proposes expanding kind k to infinity with the help of the method of equidistant coefficients. Some connections of these polynomials with the Alexander knot and link polynomial invariants are investigated.
引用
收藏
页码:488 / 494
页数:7
相关论文
共 15 条
[1]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[2]  
Atiyah M., 1990, GEOMETRY PHYS KNOTS
[3]  
Conway J.H., 1970, COMPUTATIONAL PROBLE
[4]   A NEW POLYNOMIAL INVARIANT OF KNOTS AND LINKS [J].
FREYD, P ;
YETTER, D ;
HOSTE, J ;
LICKORISH, WBR ;
MILLETT, K ;
OCNEANU, A .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (02) :239-246
[5]  
Gavrilik AM, 2011, UKR J PHYS, V56, P680
[6]  
Gavrilik AM, 2010, UKR J PHYS, V55, P129
[7]   A POLYNOMIAL INVARIANT FOR KNOTS VIA VONNEUMANN-ALGEBRAS [J].
JONES, VFR .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 12 (01) :103-111
[8]  
Kauffman L. H., 1996, P S APP MATH, V51
[9]  
Kauffman L. H., 2001, KNOTS PHYS, V2nd
[10]  
Lickorish W.B.R., 1997, INTRO KNOT THEORY