THE RESTRICTED EM ALGORITHM FOR MAXIMUM-LIKELIHOOD-ESTIMATION UNDER LINEAR RESTRICTIONS ON THE PARAMETERS

被引:54
作者
KIM, DK
TAYLOR, JMG
机构
[1] UNIV ILLINOIS,DEPT SURG ONCOL,CHICAGO,IL 60607
[2] UNIV CALIF LOS ANGELES,DEPT BIOSTAT,LOS ANGELES,CA
关键词
BIVARIATE NORMAL MODEL; INCOMPLETE DATA PROBLEMS; LAGRANGE MULTIPLIERS; LIKELIHOOD RATIO TEST; PROFILE LIKELIHOOD CONFIDENCE INTERVAL; RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION; VARIANCE COMPONENT MODEL;
D O I
10.2307/2291083
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The EM algorithm is one of the most powerful algorithms for obtaining maximum likelihood estimates for many incomplete-data problems. But when the parameters must satisfy a set of linear restrictions, the EM algorithm may be too complicated to apply directly. In this article we propose maximum likelihood estimation procedures under a set of linear restrictions for situations in which the EM algorithm could be used if there were no such restrictions on the parameters. We develop a modification to the EM algorithm, which we call the restricted EM algorithm, incorporating the linear restrictions on the parameters. This algorithm is easily updated by using the code for the complete data information matrix and the code for the usual EM algorithm. Major applications of the restricted EM algorithm are to construct likelihood ratio tests and profile likelihood confidence intervals. We illustrate the procedure with two models: a variance component model and a bivariate normal model.
引用
收藏
页码:708 / 716
页数:9
相关论文
共 12 条
  • [1] AITKIN H, 1989, STATISTICAL MODELING
  • [2] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [3] DENNIS JE, 1983, NUMERICAL METHODS UN
  • [4] KIM DK, 1991, THESIS U CALIFORNIA
  • [5] LANGE K, 1991, UNPUB GRADIENT ALGOR
  • [6] LITTLE R, 1987, STATISTICAL ANAL MIS
  • [7] LOUIS TA, 1982, J ROY STAT SOC B MET, V44, P226
  • [8] USING EM TO OBTAIN ASYMPTOTIC VARIANCE - COVARIANCE MATRICES - THE SEM ALGORITHM
    MENG, XL
    RUBIN, DB
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1991, 86 (416) : 899 - 909
  • [9] NETER J, 1985, APPLIED LINEAR STATI
  • [10] Seber G. A. F., 1984, MULTIVARIATE OBSERVA