ANALYTIC STUDY OF A MODEL OF DIFFUSION ON A RANDOM COMB-LIKE STRUCTURE

被引:12
|
作者
ASLANGUL, C
POTTIER, N
CHVOSTA, P
机构
[1] CHARLES UNIV,INST PHYS,CS-12116 PRAGUE,CZECH REPUBLIC
[2] UNIV PARIS 07,PHYS SOLIDES GRP,F-75251 PARIS 05,FRANCE
来源
PHYSICA A | 1994年 / 203卷 / 3-4期
关键词
D O I
10.1016/0378-4371(94)90014-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytic study of a model of diffusion on a random comblike structure in which no bias field does exist neither along the backbone nor along the branches. For any given disordered structure, our analytic treatment allows to compute in an exact manner the asymptotic behaviour at large time of the probability of presence of the particle at its initial site and on the backbone, and of the particle position and dispersion. The expressions of these quantities are shown to coincide asymptotically with those derived in simple ''mean-field'' treatments. The results for any given sample do not depend on the particular configuration (self-averaging property). The behaviours strongly depend on the distribution of the lengths of the branches. With an exponential distribution, transport is normal, while anomalous diffusion may take place for a power law distribution (when long branches are present with a sufficiently high weight).
引用
收藏
页码:533 / 565
页数:33
相关论文
共 50 条
  • [1] ANALYTIC STUDY OF A MODEL OF BIASED DIFFUSION ON A RANDOM COMB-LIKE STRUCTURE
    POTTIER, N
    PHYSICA A, 1994, 208 (01): : 91 - 123
  • [2] ANALYTIC STUDY OF A MODEL OF DIFFUSION ON RANDOM COMB-LIKE STRUCTURES
    POTTIER, N
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1994, 16 (08): : 1223 - 1230
  • [3] ANOMALOUS DIFFUSION ON A RANDOM COMB-LIKE STRUCTURE
    HAVLIN, S
    KIEFER, JE
    WEISS, GH
    PHYSICAL REVIEW A, 1987, 36 (03): : 1403 - 1408
  • [4] The diffusion-drift equation on comb-like structure
    El-Wakil, SA
    Zahran, MA
    Abulwafa, EM
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 303 (1-2) : 27 - 34
  • [5] DIFFUSION ON RANDOM COMB-LIKE STRUCTURES - FIELD-INDUCED TRAPPING EFFECTS
    POTTIER, N
    PHYSICA A, 1995, 216 (1-2): : 1 - 19
  • [6] SCALING PROPERTIES OF DIFFUSION ON COMB-LIKE STRUCTURES
    MATAN, O
    HAVLIN, S
    STAUFFER, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (14): : 2867 - 2869
  • [7] Fractional (space-time) diffusion equation on comb-like model
    Elwakil, SA
    Zahran, MA
    Abulwafa, EM
    CHAOS SOLITONS & FRACTALS, 2004, 20 (05) : 1113 - 1120
  • [8] COMB-LIKE POLYMERS - STRUCTURE AND PROPERTIES
    PLATE, NA
    SHIBAEV, VP
    MACROMOLECULAR REVIEWS PART D-JOURNAL OF POLYMER SCIENCE, 1974, 8 : 117 - 253
  • [9] Structure of mesophases of a rigid comb-like polymer
    Rusakov, V.V.
    Shliomis, M.I.
    Polymer science USSR, 1987, 29 (06): : 1323 - 1330
  • [10] STRUCTURE OF MESOPHASES OF RIGID COMB-LIKE POLYMER
    RUSAKOV, VV
    SHLIOMIS, MI
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA A, 1987, 29 (06): : 1195 - 1200