A NOTE ON INTEGRABILITY AND CHAOS OF REDUCED SELF-DUAL YANG-MILLS EQUATIONS AND YANG-MILLS EQUATIONS

被引:2
作者
STEEB, WH [1 ]
EULER, N [1 ]
MULSER, P [1 ]
机构
[1] TH DARMSTADT,INST ANGEW PHYS,W-6100 DARMSTADT,GERMANY
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS | 1991年 / 106卷 / 09期
关键词
D O I
10.1007/BF02728350
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From Yang-Mills equations in four dimensions we can derive ordinary differential equations with chaotic behaviour. On the other hand, we can find competely integrable ordinary differential equations from self-dual Yang-Mills equations in four dimensions. We describe a connection.between these integrable and chaotic systems.
引用
收藏
页码:1059 / 1061
页数:3
相关论文
共 11 条
[1]   EXISTENCE OF STABLE ORBITS IN THE X2Y2 POTENTIAL [J].
DAHLQVIST, P ;
RUSSBERG, G .
PHYSICAL REVIEW LETTERS, 1990, 65 (23) :2837-2838
[2]   NONLINEAR SCHRODINGER AND KORTEWEG DE VRIES ARE REDUCTIONS OF SELF-DUAL YANG-MILLS [J].
MASON, LJ ;
SPARLING, GAJ .
PHYSICS LETTERS A, 1989, 137 (1-2) :29-33
[3]  
Steeb W. H., 1988, NONLINEAR EVOLUTION
[4]   CHAOS IN YANG-MILLS EQUATIONS [J].
STEEB, WH ;
LOUW, JA ;
VILLET, CM .
PHYSICAL REVIEW D, 1986, 33 (04) :1174-1176
[5]  
STEEB WH, 1990, PROBLEMS MATH PHYSIC, V2
[6]  
STEEB WH, 1991, HDB TERMS USED CHAOS
[7]   Integrability of the chiral equations with torsion term [J].
Ward, R. S. .
NONLINEARITY, 1988, 1 (04) :671-679
[8]   COMPLETELY SOLVABLE GAUGE-FIELD EQUATIONS IN DIMENSION GREATER THAN 4 [J].
WARD, RS .
NUCLEAR PHYSICS B, 1984, 236 (02) :381-396
[9]   ANSATZE FOR SELF-DUAL YANG-MILLS FIELDS [J].
WARD, RS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 80 (04) :563-574
[10]   STATIONARY AXISYMMETRIC SPACE-TIMES - A NEW APPROACH [J].
WARD, RS .
GENERAL RELATIVITY AND GRAVITATION, 1983, 15 (02) :105-109