NOETHER SYMMETRIES AND INTEGRABILITY IN TIME-DEPENDENT HAMILTONIAN MECHANICS

被引:11
作者
Jovanovic, Bozidar [1 ]
机构
[1] Serbian Acad Arts & Sci, Math Inst SANU, Belgrade, Serbia
关键词
symmetries; the principle of stationary action; Poincare-Cartan form; contact Hamiltonin vector fields; Noether theorem;
D O I
10.2298/TAM160121009J
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider Noether symmetries within Hamiltonian setting as transformations that preserve Poincare-Cartan form, i.e., as symmetries of characteristic line bundles of nondegenerate 1-forms. In the case when the Poincare-Cartan form is contact, the explicit expression for the symmetries in the inverse Noether theorem is given. As examples, we consider natural mechanical systems, in particular the Kepler problem. Finally, we prove a variant of the theorem on complete (non-commutative) integrability in terms of Noether symmetries of time-dependent Hamiltonian systems.
引用
收藏
页码:255 / 273
页数:19
相关论文
共 34 条
[1]  
Albert C., 1989, J GEOM PHYS, V6, P628
[2]  
[Anonymous], 1987, SYMPLECTIC GEOMETRY
[3]  
Arnold V. I, 1989, MATH METHODS CLASSIC, VSecond, DOI DOI 10.1007/978-1-4757-1693-1
[4]   Unified formalism for nonautonomous mechanical systems [J].
Barbero-Linan, Maria ;
Echeverria-Enriquez, Arturo ;
de Diego, David Martin ;
Munoz-Lecanda, Miguel C. ;
Roman-Roy, Narciso .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (06)
[5]   GRADIENT VECTOR-FIELDS ON COSYMPLECTIC MANIFOLDS [J].
CANTRIJN, F ;
DELEON, M ;
LACOMBA, EA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (01) :175-188
[6]   SYMMETRIES AND CONSERVATION-LAWS FOR GENERALIZED HAMILTONIAN-SYSTEMS [J].
CANTRIJN, F ;
SARLET, W .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1981, 20 (09) :645-670
[7]   A SURVEY ON COSYMPLECTIC GEOMETRY [J].
Cappelletti-Montano, Beniamino ;
De Nicola, Antonio ;
Yudin, Ivan .
REVIEWS IN MATHEMATICAL PHYSICS, 2013, 25 (10)
[8]  
Carinena J. F., 1992, Reports on Mathematical Physics, V31, P189, DOI 10.1016/0034-4877(92)90014-R
[9]   VARIATIONAL PRINCIPLES FOR LIE-POISSON AND HAMILTON-POINCARE EQUATIONS [J].
Cendra, Hernan ;
Marsden, Jerrold E. ;
Pekarsky, Sergey ;
Ratiu, Tudor S. .
MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (03) :833-867
[10]   CONSTANTS OF MOTION IN LAGRANGIAN MECHANICS [J].
CRAMPIN, M .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1977, 16 (10) :741-754