DIRECT DYNAMICAL TEST FOR DETERMINISTIC CHAOS AND OPTIMAL EMBEDDING OF A CHAOTIC TIME-SERIES

被引:97
作者
GAO, JB
ZHENG, ZM
机构
[1] Laboratory for Nonlinear Mechanics of Continuous Media, Institute of Mechanics, Chinese Academy of Sciences, Beijing
来源
PHYSICAL REVIEW E | 1994年 / 49卷 / 05期
关键词
D O I
10.1103/PhysRevE.49.3807
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We propose here a local exponential divergence plot which is capable of providing an alternative means of characterizing a complex time series. The suggested plot defines a time-dependent exponent and a ''plus'' exponent. Based on their changes with the embedding dimension and delay time, a criterion for estimating simultaneously the minimal acceptable embedding dimension, the proper delay time, and the largest Lyapunov exponent has been obtained. When redefining the time-dependent exponent LAMBDA(k) curves on a series of shells, we have found that whether a linear envelope to the LAMBDA(k) curves exists can serve as a direct dynamical method of distinguishing chaos from noise.
引用
收藏
页码:3807 / 3814
页数:8
相关论文
共 33 条
[1]   LOCAL LYAPUNOV EXPONENTS COMPUTED FROM OBSERVED DATA [J].
ABARBANEL, HDI ;
BROWN, R ;
KENNEL, MB .
JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (03) :343-365
[2]   ESTIMATING THE EMBEDDING DIMENSION [J].
ALEKSIC, Z .
PHYSICA D, 1991, 52 (2-3) :362-368
[3]  
[Anonymous], 1991, J NONLINEAR SCI, DOI [10.1007/BF01209065, DOI 10.1007/BF01209065]
[4]   ESTIMATION OF THE NUMBER OF DEGREES OF FREEDOM FROM CHAOTIC TIME-SERIES [J].
CENYS, A ;
PYRAGAS, K .
PHYSICS LETTERS A, 1988, 129 (04) :227-230
[5]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656
[6]   INDEPENDENT COORDINATES FOR STRANGE ATTRACTORS FROM MUTUAL INFORMATION [J].
FRASER, AM ;
SWINNEY, HL .
PHYSICAL REVIEW A, 1986, 33 (02) :1134-1140
[7]  
GAO JB, IN PRESS PHYS LETT A
[8]   MEASURING THE STRANGENESS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICA D, 1983, 9 (1-2) :189-208
[9]   ESTIMATION OF THE KOLMOGOROV-ENTROPY FROM A CHAOTIC SIGNAL [J].
GRASSBERGER, P ;
PROCACCIA, I .
PHYSICAL REVIEW A, 1983, 28 (04) :2591-2593