ON SELF-DUAL AFFINE-INVARIANT CODES

被引:11
作者
CHARPIN, P
LEVYDITVEHEL, F
机构
[1] INRIA, Domaine de Voluceau, Rocquencourt, BP 105
关键词
D O I
10.1016/0097-3165(94)90014-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An extended cyclic code of length 2m over GF(2) cannot be self-dual for even m. For odd m, the Reed-Muller code [2m, 2m-1, 2(m+1)/2] is affine-invariant and self-dual, and it is the only such code for m = 3 or 5. We describe the set of binary self-dual affine-invariant codes of length 2m for m = 7 and m = 9. For each odd m, m greater-than-or-equal-to 9, we exhibit a self-dual affine-invariant code of length 2m over GF(2) which is not the self-dual Reed-Muller code. In the first part of the paper, we present the class of self-dual affine-invariant codes of length 2rm over GF(2r), and the tools we apply later to the binary codes. (C) 1994 Academic Press, Inc.
引用
收藏
页码:223 / 244
页数:22
相关论文
共 15 条
[1]  
ASSMUS EF, 1992, CAMBRIDGE TRACTS MAT, V103
[2]   STUDYING THE LOCATOR POLYNOMIALS OF MINIMUM WEIGHT CODEWORDS OF BCH CODES [J].
AUGOT, D ;
CHARPIN, P ;
SENDRIER, N .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (03) :960-973
[3]  
AUGOT D, LECTURE NOTES COMPUT, V514, P65
[4]   EXTENDED AFFINE-INVARIANT CYCLIC CODES AND ANTICHAINS OF A PARTIALLY ORDERED SET [J].
CHARPIN, P .
DISCRETE MATHEMATICS, 1990, 80 (03) :229-247
[5]  
CHARPIN P, LECTURE NOTES COMPUT, V356
[6]  
CHARPIN P, 1983, ANN DISCRETE MATH, V17, P171
[7]  
CHARPIN P, 1987, THESIS U PARIS 7
[8]   MULTIPLIERS AND GENERALIZED MULTIPLIERS OF CYCLIC OBJECTS AND CYCLIC CODES [J].
HUFFMAN, WC ;
JOB, V ;
PLESS, V .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (02) :183-215
[9]   NEW GENERALIZATIONS OF REED-MULLER CODES .I. PRIMITIVE CODES [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (02) :189-+
[10]   SOME RESULTS ON CYCLIC CODES WHICH ARE INVARIANT UNDER AFFINE GROUP AND THEIR APPLICATIONS [J].
KASAMI, T ;
LIN, S ;
PETERSON, WW .
INFORMATION AND CONTROL, 1967, 11 (5-6) :475-&