ACCELERATIONS FOR A VARIETY OF GLOBAL OPTIMIZATION METHODS

被引:16
|
作者
BARITOMPA, W [1 ]
机构
[1] UNIV CANTERBURY,DEPT MATH,CHRISTCHURCH 1,NEW ZEALAND
关键词
MULTIDIMENSIONAL BISECTION; DETERMINISTIC; GLOBAL OPTIMIZATION; MATHEMATICAL PROGRAMMING; SEARCH;
D O I
10.1007/BF01096533
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Optimization methods for a given class are easily modified to utilize additional information and work faster on a more restricted class. In particular algorithms that use only the Lipschitz constant (e.g. Mladineo, Piyavskii, Shubert and Wood) can be modified to use second derivative bounds or gradient calculations. The algorithm of Breiman & Cutler can be modified to use Lipschitz bounds. Test cases illustrating accelerations to various algorithms are provided.
引用
收藏
页码:37 / 45
页数:9
相关论文
共 50 条
  • [21] Imbedding and cutting methods for global optimization and their applications
    Bulatov, Valerian
    OPTIMIZATION, 2009, 58 (07) : 763 - 770
  • [22] New interval methods for constrained global optimization
    M.Cs. Markót
    J. Fernández
    L.G. Casado
    T. Csendes
    Mathematical Programming, 2006, 106 : 287 - 318
  • [23] GLOBAL OPTIMIZATION METHODS FOR ENGINEERING APPLICATIONS - A REVIEW
    ARORA, JS
    ELWAKEIL, OA
    CHAHANDE, AI
    HSIEH, CC
    STRUCTURAL OPTIMIZATION, 1995, 9 (3-4): : 137 - 159
  • [24] Global Interval Methods for Local Nonsmooth Optimization
    Christiane Görges
    Helmut Ratschek
    Journal of Global Optimization, 1999, 14 : 157 - 179
  • [25] Dynamic search trajectory methods for global optimization
    Alexandropoulos, Stamatios-Aggelos N.
    Pardalos, Panos M.
    Vrahatis, Michael N.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (1-3) : 3 - 37
  • [26] Global interval methods for local nonsmooth optimization
    Görges, C
    Ratschek, H
    JOURNAL OF GLOBAL OPTIMIZATION, 1999, 14 (02) : 157 - 179
  • [27] A discussion of objective function representation methods in global optimization
    Panos M.PARDALOS
    Mahdi FATHI
    Frontiers of Engineering Management, 2018, (04) : 515 - 523
  • [28] Global Optimization Methods to Design Vacuum Electronic Devices
    Wang Huihui
    Meng Lin
    Liu Dagang
    Liu Laqun
    2016 IEEE INTERNATIONAL VACUUM ELECTRONICS CONFERENCE (IVEC), 2016,
  • [29] Subdivision direction selection in interval methods for global optimization
    Csendes, T
    Ratz, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (03) : 922 - 938
  • [30] Global optimization methods for high-dimensional problems
    Schoen, F
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 119 (02) : 345 - 352