INTRODUCTION TO TORIC VARIETIES - ORBITS, TOPOLOGY, AND LINE BUNDLES

被引:0
作者
不详
机构
来源
ANNALS OF MATHEMATICS STUDIES | 1993年 / 131期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:51 / +
相关论文
共 50 条
[41]   POSITIVE LINE BUNDLES ON ARITHMETIC VARIETIES [J].
ZHANG, SW .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (01) :187-221
[42]   Immaculate line bundles on tonic varieties [J].
Altmann, Klaus ;
Buczynski, Jaroslaw ;
Kastner, Lars ;
Winz, Anna-Lena .
PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (04) :1147-1217
[43]   Toric varieties admitting an action of a unipotent group with a finite number of orbits [J].
Shafarevich, Anton .
RESEARCH IN THE MATHEMATICAL SCIENCES, 2025, 12 (01)
[44]   Vector bundles on toric varieties (vol 350, pg 209, 2012) [J].
Gharib, Saman ;
Karu, Kalle .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (21-22) :965-965
[45]   Algebraic topology of Calabi-Yau threefolds in toric varieties [J].
Doran, Charles F. ;
Morgan, John W. .
GEOMETRY & TOPOLOGY, 2007, 11 :597-642
[46]   INTRODUCTION TO TORIC VARIETIES - MOMENT MAPS AND THE TANGENT BUNDLE [J].
不详 .
ANNALS OF MATHEMATICS STUDIES, 1993, (131) :78-+
[47]   THE MOMENT MAP AND LINE BUNDLES OVER PRESYMPLECTIC TORIC MANIFOLDS [J].
KARSHON, Y ;
TOLMAN, S .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1993, 38 (03) :465-484
[48]   Cohomology of toric line bundles via simplicial Alexander duality [J].
Jow, Shin-Yao .
JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (03)
[49]   Smooth complete toric threefolds with no nontrivial nef line bundles [J].
Fujino, O ;
Payne, S .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (10) :174-179
[50]   Exceptional sequences of line bundles and spherical twists: a toric example [J].
Hochenegger, Andreas .
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2013, 54 (01) :311-322