INTRODUCTION TO TORIC VARIETIES - ORBITS, TOPOLOGY, AND LINE BUNDLES

被引:0
作者
不详
机构
来源
ANNALS OF MATHEMATICS STUDIES | 1993年 / 131期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:51 / +
相关论文
共 50 条
[31]   A classification of equivariant principal bundles over nonsingular toric varieties [J].
Biswas, Indranil ;
Dey, Arijit ;
Poddar, Mainak .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (14)
[32]   Geometrical Description of Orbits of Automorphism Group of Affine Toric Varieties [J].
Shafarevich, A. A. .
MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2019, 74 (05) :209-211
[33]   Geometrical Description of Orbits of Automorphism Group of Affine Toric Varieties [J].
A. A. Shafarevich .
Moscow University Mathematics Bulletin, 2019, 74 :209-211
[34]   Adelic line bundles on arithmetic varieties [J].
Chen, Huayi ;
Moriwaki, Atsushi .
ARAKELOV GEOMETRY OVER ADELIC CURVES, 2020, 2258 :327-402
[35]   Heights for line bundles on arithmetic varieties [J].
Jahnel, J .
MANUSCRIPTA MATHEMATICA, 1998, 96 (04) :421-442
[36]   Cohomology of line bundles on horospherical varieties [J].
Bonala, Narasimha Chary ;
Dejoncheere, Benoit .
MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) :525-540
[37]   Balanced line bundles on Fano varieties [J].
Lehmann, Brian ;
Tanimoto, Sho ;
Tschinkel, Yuri .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2018, 743 :91-131
[38]   Heights for line bundles on arithmetic varieties [J].
Jörg Jahnel .
manuscripta mathematica, 1998, 96 :421-442
[39]   Cohomology of line bundles on horospherical varieties [J].
Narasimha Chary Bonala ;
Benoît Dejoncheere .
Mathematische Zeitschrift, 2020, 296 :525-540
[40]   Poincare series of line bundles on varieties [J].
Cutkosky, SD .
TRIBUTE TO C.S. SESHADRI: A COLLECTION OF ARTICLES ON GEOMETRY AND REPRESENTATION THEORY, 2003, :220-240