STATISTICAL-MECHANICS OF EULER EQUATIONS IN 2 DIMENSIONS

被引:359
作者
MILLER, J [1 ]
机构
[1] CALTECH,PASADENA,CA 91125
关键词
D O I
10.1103/PhysRevLett.65.2137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate the statistical mechanics of a two-dimensional inviscid incompressible fluid in a manner which, for the first time, respects all conservation laws. For a special case, we demonstrate that a mean-field theory is exact. A consequence of our arguments is that, in an inviscid fluid evolving from initial conditions to statistical equilibrium, only the energy and certain one-body integrals appear to be conserved. Our methods may be applied to a variety of Hamiltonian systems possessing an infinite number of conservation laws. © 1990 The American Physical Society.
引用
收藏
页码:2137 / 2140
页数:4
相关论文
共 22 条
[1]  
[Anonymous], 2008, GALACTIC DYNAMICS, DOI DOI 10.1515/9781400828722
[2]  
[Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
[3]  
CROSS MC, COMMUNICATION
[4]   LARGE-DISTANCE AND LONG-TIME PROPERTIES OF A RANDOMLY STIRRED FLUID [J].
FORSTER, D ;
NELSON, DR ;
STEPHEN, MJ .
PHYSICAL REVIEW A, 1977, 16 (02) :732-749
[5]  
FROHLICH J, 1982, COMMUN MATH PHYS, V87, P1, DOI 10.1007/BF01211054
[6]  
Holm D. D., 1985, Physics Reports, V123, P1, DOI 10.1016/0370-1573(85)90028-6
[7]  
KIRCHOFF G, 1877, LECTURES MATH PHYSIC
[8]   INERTIAL RANGES IN 2-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH .
PHYSICS OF FLUIDS, 1967, 10 (07) :1417-+
[9]   TWO-DIMENSIONAL TURBULENCE [J].
KRAICHNAN, RH ;
MONTGOMERY, D .
REPORTS ON PROGRESS IN PHYSICS, 1980, 43 (05) :547-619