CONCAVITY PROPERTIES OF KREINS SPECTRAL SHIFT FUNCTION

被引:13
作者
GEISLER, R [1 ]
KOSTRYKIN, V [1 ]
SCHRADER, R [1 ]
机构
[1] ST PETERSBURG STATE UNIV,DEPT MATH & COMPUTAT PHYS,ST PETERSBURG 198904,RUSSIA
关键词
D O I
10.1142/S0129055X95000098
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the integrated Krein's spectral shift function for one particle Schrodinger operators in R(3) is concave with respect to the perturbation potential. The proof is given by showing that the spectral shift function is the limit in the distributional sense of the difference of the counting functions for the given Hamiltonian and the free Hamiltonian in a finite domain Lambda with Dirichlet boundary conditions when Lambda --> infinity.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 33 条
[1]  
Albeverio S., 2005, SOLVABLE MODELS QUAN, V2nd ed.
[2]   SOLUTION OF SCHRODINGER EQUATION IN TERMS OF CLASSICAL PATHS [J].
BALIAN, R ;
BLOCH, C .
ANNALS OF PHYSICS, 1974, 85 (02) :514-545
[3]  
Birman M. S., 1962, SOV MATH DOKL, V3, P740
[4]  
BIRMAN MS, 1969, VESTNIK LENINGRAD U, V0024, P00035
[5]  
BIRMAN MS, 1992, ALGEBRA ANAL, V4, P1
[6]  
BUSLAEV VS, 1967, TOPICS MATH PHYSICS, V1, P69
[7]  
Carmona R., 1990, SPECTRAL THEORY RAND
[8]  
Cooper R, 1927, P LOND MATH SOC, V26, P415
[9]  
DEVERDIERE C, 1981, ANN SCI ECOLE NORM S, V14, P27
[10]  
Feller W., 1966, INTRO PROBABILITY TH, V2