ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM

被引:68
作者
HASSIN, R
TAMIR, A
机构
[1] Department of Statistics and Operations Research, School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv
关键词
ALGORITHMS; COMBINATORIAL PROBLEMS; MINIMUM DIAMETER SPANNING TREE; ABSOLUTE; 1-CENTER;
D O I
10.1016/0020-0190(94)00183-Y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We point out a relation between the minimum diameter spanning tree of a graph and its absolute 1-center. We use this relation to solve the diameter problem and an extension of its efficiently.
引用
收藏
页码:109 / 111
页数:3
相关论文
共 10 条
[1]  
CUNNIGHAMEGREEN.RA, 1984, DISCRETE APPL MATH, V7, P275
[2]  
FREDMAN M, 1987, J ACM, V34, P1004
[3]  
Hakimi S. L., 1978, Transportation Science, V12, P1, DOI 10.1287/trsc.12.1.1
[4]   OPTIMUM LOCATIONS OF SWITCHING CENTERS + ABSOLUTE CENTERS + MEDIANS OF GRAPH [J].
HAKIMI, SL .
OPERATIONS RESEARCH, 1964, 12 (03) :450-&
[5]  
Handler G. Y., 1973, Transportation Science, V7, P287, DOI 10.1287/trsc.7.3.287
[6]   MINIMUM DIAMETER SPANNING-TREES AND RELATED PROBLEMS [J].
HO, JM ;
LEE, DT ;
CHANG, CH ;
WONG, CK .
SIAM JOURNAL ON COMPUTING, 1991, 20 (05) :987-997
[7]  
Ihler E, 1991, LNCS, V551, P103
[8]   ALGORITHMIC APPROACH TO NETWORK LOCATION PROBLEMS .1. P-CENTERS [J].
KARIV, O ;
HAKIMI, SL .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 37 (03) :513-538
[9]   CENTERS AND MEDIANS OF A GRAPH [J].
MINIEKA, E .
OPERATIONS RESEARCH, 1977, 25 (04) :641-650
[10]  
Tamir A., 1988, SIAM J DISCRETE MATH, V1, P377