On Local Existence and Blow-up of a Moving Boundary Problem in 1-D Chemotaxis Model

被引:2
作者
Wu Shaohua [1 ]
Wang Chunying [1 ]
Yue Bo [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2016年 / 29卷 / 04期
关键词
Chemotaxis model; moving boundary; local existence; finite-time blowup;
D O I
10.4208/jpde.v29.n4.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the local existence and uniqueness of a chemotaxis model with a moving boundary are considered by the contraction mapping principle, and the explicit expression for the moving boundary is formulated. In addition, the finite-time blowup and chemotactic collapse of the solution for such kind of problem are discussed.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 49 条
  • [1] On Existence of Local Solutions of a Moving Boundary Problem Modelling Chemotaxis in 1-D.
    Wu Shaohua
    Yue Bo
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2014, 27 (03): : 268 - 282
  • [2] Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem*
    Ding, Hang
    Zhou, Jun
    NONLINEARITY, 2020, 33 (03) : 1046 - 1063
  • [3] Blow-up solutions of a chemotaxis model with nonlocal effects
    Du, Wenping
    Liu, Suying
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 73
  • [4] A quasilinear chemotaxis-haptotaxis system: Existence and blow-up results
    Rani, Poonam
    Tyagi, Jagmohan
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 402 : 180 - 217
  • [5] THE MOVING BOUNDARY PROBLEM IN A CHEMOTAXIS MODEL
    Chen, Hua
    Wu, Shaohua
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (02) : 735 - 746
  • [6] Local Existence and Blow-up Criterion of the Inhomogeneous Euler Equations
    Chae, Dongho
    Lee, Jihoon
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2003, 5 (02) : 144 - 165
  • [7] Local Existence and Finite-time Blow-up in Multidimensional Radiation Hydrodynamics
    Xinhua Zhong
    Song Jiang
    Journal of Mathematical Fluid Mechanics, 2007, 9 : 543 - 564
  • [8] Local existence and finite-time blow-up in multidimensional radiation hydrodynamics
    Zhong, Xinhua
    Jiang, Song
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2007, 9 (04) : 543 - 564
  • [9] Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem
    Ding, Hang
    Zhou, Jun
    NONLINEARITY, 2020, 33 (11) : 6099 - 6133
  • [10] Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions
    Xiang Mingqi
    Radulescu, Vicentiu D.
    Binlin Zhang
    NONLINEARITY, 2018, 31 (07) : 3228 - 3250