EXTREME POINTS IN SETS OF POSITIVE LINEAR MAPS ON B(H)

被引:49
作者
ANDERSON, J
机构
[1] The Pennsylvania State University, University Park, PA 16802
关键词
D O I
10.1016/0022-1236(79)90061-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Three main results are obtained: (1) If D is an atomic maximal Abelian subalgebra of B(H), P is the projection of B(H) onto D and h is a complex homomorphism on D, then h {ring operator} P is a pure state on B(H). (2) If {Pn} is a sequence of mutually orthogonal projections with rank(Pn) = n and ∑ Pn = I, P is the projection of B(H) onto {Pn}″ given by P(T)=∑tracen(T)Pn and h is a homomorphism on {Pn}″ such that h(Pn) = 0 for all n then h {ring operator} P induces a type II∞ factor representation of the Calkin algebra. (3) If M is a nonatomic maximal Abelian subalgebra of B(H) then there is an atomic maximal Abelian subalgebra D of B(H) and a large family {Φα} of *-homomorphisms from D onto M such that for each α, Φα {ring operator} P is an extreme point in the set of projections from B(H) onto M. (Here P denotes the projection of B(H) onto D.). © 1979.
引用
收藏
页码:195 / 217
页数:23
相关论文
共 28 条
[1]   TYPE-II INFINITY FACTOR REPRESENTATION OF CALKIN ALGEBRA [J].
ANDERSON, J ;
BUNCE, J .
AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (03) :515-521
[2]  
ANDERSON J, T AM MATH SOC
[3]  
ARVESON WB, 1969, ACTA MATH, V123, P271
[4]  
BADE WG, 1971, BANACH SPACE CS LECT, V26
[5]  
Bonsall F. F., 1956, P AM MATH SOC, V7, P831
[6]  
CALKIN JW, 1941, ANN MATH, V42, P839, DOI 10.2307/1968771
[7]  
DIXMIER J, 1964, C ALGEBRES LEUR REPR
[8]   EMBEDDING OF AW ALGEBRAS [J].
FELDMAN, J .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (02) :303-307
[9]  
Gillman L., 1960, U SERIES HIGHER MATH
[10]   EXTENSIONS OF PURE STATES [J].
KADISON, RV ;
SINGER, IM .
AMERICAN JOURNAL OF MATHEMATICS, 1959, 81 (02) :383-400