Filtering Algorithm for Real Eigenvalue Bounds of Interval and Fuzzy Generalized Eigenvalue Problems

被引:2
作者
Mahato, Nisha Rani [1 ]
Chakraverty, S. [1 ]
机构
[1] Natl Inst Technol Rourkela, Dept Math, Rourkela 769008, Odisha, India
来源
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING | 2016年 / 2卷 / 04期
关键词
fuzzy filtering; eigenvalue bounds; generalized eigenvalue problem; interval analysis; fuzzy methods; triangular fuzzy number;
D O I
10.1115/1.4032958
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with an interval and fuzzy generalized eigenvalue problem involving uncertain parameters. Based on a sufficient regularity condition for intervals, an interval filtering eigenvalue procedure for generalized eigenvalue problems with interval parameters is proposed, which iteratively eliminates the parts that do not contain an eigenvalue and thus reduces the initial eigenvalue bound to a precise bound. The same iterative procedure has been proposed for generalized fuzzy eigenvalue problems. In general, the solution of dynamic problems of structures using the finite element method (FEM) leads to a generalized eigenvalue problem. Based on the proposed procedures, various structural examples with an interval and fuzzy parameter such as triangular fuzzy number (TFN) are investigated to show the efficiency of the algorithms stated. Finally, fuzzy filtered eigenvalue bounds are depicted by fuzzy plots using the alpha-cut.
引用
收藏
页数:8
相关论文
共 24 条
[1]  
Alefeld G., 1984, INTRO INTERVAL COMPU
[2]  
Bhat R.B., 2007, NUMERICAL ANAL ENG
[3]  
Gerald CF, 2009, APPL NUMERICAL ANAL
[4]   Bounds on eigenvalues of real and complex interval matrices [J].
Hladik, Milan .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (10) :5584-5591
[5]   A filtering method for the interval eigenvalue problem [J].
Hladik, Milan ;
Daney, David ;
Tsigaridas, Elias .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5236-5242
[6]  
Hogben L, 2006, HDB LINEAR ALGEBRA
[7]  
Horn R., 1994, TOPICS MATRIX ANAL, DOI DOI 10.1017/CBO9780511840371
[8]  
Horn R. A., 1985, MATRIX ANAL
[9]  
Humar J., 2012, DYNAMICS STRUCTURE, V3rd
[10]  
Jaulin L., 2001, APPL INTERVAL ANAL E