Trace as an Alternative Decategorification Functor

被引:20
作者
Beliakova, Anna [1 ]
Guliyev, Zaur [1 ]
Habiro, Kazuo [2 ]
Lauda, Aaron [3 ]
机构
[1] Univ Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
[2] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
[3] Univ Southern Calif, Los Angeles, CA 90089 USA
基金
瑞士国家科学基金会;
关键词
2-category; Grothendieck group; Trace; Hochschild-Mitchell homology; Categorified quantum group;
D O I
10.1007/s40306-014-0092-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Categorification is a process of lifting structures to a higher categorical level. The original structure can then be recovered by means of the so-called "decategorification" functor. Algebras are typically categorified to additive categories with additional structure, and decategorification is usually given by the (split) Grothendieck group. In this article, we study an alternative decategorification functor given by the trace or the zeroth Hochschild-Mitchell homology. We show that this form of decategorification endows any 2-representation of the categorified quantum sl(n) with an action of the current algebra U(sl(n)[t]) on its center.
引用
收藏
页码:425 / 480
页数:56
相关论文
共 64 条
[1]  
Baez J.C., 1998, CONT MATH, V230, P1
[2]  
Balagovic M., 2013, ARXIV13082347
[3]   Khovanov's homology for tangle and cobordisms [J].
Bar-Natan, D .
GEOMETRY & TOPOLOGY, 2005, 9 :1443-1499
[4]   The Karoubi envelope and Lee's degeneration of Khovanov homology [J].
Bar-Natan, Dror ;
Morrison, Scott .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2006, 6 :1459-1469
[5]  
Beilinson A., 1981, ASTERISQUE, V100, P5
[6]  
Beliakova A., 2014, UNPUB
[7]  
Beliakova A., 2014, ARXIV14041806
[8]   AN ORIENTED MODEL FOR KHOVANOV HOMOLOGY [J].
Blanchet, Christian .
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2010, 19 (02) :291-312
[9]  
Borceux F., 1994, ENCY MATH ITS APPL, V50
[10]  
Brichard J., 2008, ARXIV08112590