RELATIVISTIC QUANTUM KINEMATICS IN THE MOYAL REPRESENTATION

被引:62
作者
CARINENA, JF [1 ]
GRACIABONDIA, JM [1 ]
VARILLY, JC [1 ]
机构
[1] UNIV COSTA RICA,ESCUELA MATEMAT,SAN JOSE,COSTA RICA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 06期
关键词
D O I
10.1088/0305-4470/23/6/015
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors obtain the phase-space quantisation for relativistic spinning particles. The main tool is what they call a 'Stratonovich-Weyl quantiser' which relates functions on phase space to operators on a suitable Hilbert space, and has the essential properties of covariance (under a group representation) and traciality. Their phase spaces are coadjoint orbits of the restricted Poincare group; they compute and explicitly coordinatise the orbits corresponding to massive particles, with or without spin. Some orbits correspond to unitary irreducible representations of the Poincare group; they show that there is a unique Stratonovich-Weyl quantiser from each of these phase spaces to operators on the corresponding representation spaces, and compute it explicitly.
引用
收藏
页码:901 / 933
页数:33
相关论文
共 54 条
  • [1] ALI ST, 1989, IN PRESS ANN I H POI
  • [2] [Anonymous], 1987, SYMPLECTIC GEOMETRY
  • [3] CLASSICAL LORENTZ INVARIANT PARTICLES
    ARENS, R
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (12) : 2415 - &
  • [4] QUANTUM-MECHANICS OF NONLINEAR-SYSTEMS
    BAKAS, I
    KAKAS, AC
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12): : 3713 - 3725
  • [5] ON UNITARY RAY REPRESENTATIONS OF CONTINUOUS GROUPS
    BARGMANN, V
    [J]. ANNALS OF MATHEMATICS, 1954, 59 (01) : 1 - 46
  • [6] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [7] DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 111 - 151
  • [8] BAYLIS WE, 1989, J PHYS A-MATH GEN, V22, P1, DOI 10.1016/0920-5632(89)90417-9
  • [9] Bel L., 1980, Annales de l'Institut Henri Poincare, Section A (Physique Theorique), V33, P409
  • [10] NONEQUILIBRIUM QUANTUM-FIELDS - CLOSED-TIME-PATH EFFECTIVE ACTION, WIGNER FUNCTION, AND BOLTZMANN-EQUATION
    CALZETTA, E
    HU, BL
    [J]. PHYSICAL REVIEW D, 1988, 37 (10): : 2878 - 2900