LIE ALGEBRAIC APPROACHES TO CLASSICAL PARTITION IDENTITIES

被引:102
作者
LEPOWSKY, J [1 ]
MILNE, S [1 ]
机构
[1] YALE UNIV,DEPT MATH,NEW HAVEN,CT 06520
基金
美国国家科学基金会;
关键词
D O I
10.1016/0001-8708(78)90004-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:15 / 59
页数:45
相关论文
共 20 条
[1]   GENERAL THEORY OF IDENTITIES OF ROGERS-RAMANUJAN TYPE [J].
ANDREWS, GE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (06) :1033-1052
[2]  
ANDREWS GE, 1976, ENCYCLOPEADIA MATH A, V2
[3]   SIMPLE PROOF OF QUINTUPLE PRODUCT IDENTITY [J].
CARLITZ, L ;
SUBBARAO, MV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 32 (01) :42-&
[4]   VECTOR PARTITIONS + COMBINATORIAL IDENTITIES [J].
CHEEMA, MS .
MATHEMATICS OF COMPUTATION, 1964, 18 (87) :414-&
[5]   PARTITION THEOREMS RELATED TO SOME IDENTITIES OF ROGERS AND WATSON [J].
CONNOR, WG .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 214 (DEC) :95-111
[6]   MISSED OPPORTUNITIES [J].
DYSON, FJ .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (05) :635-&
[7]  
FEINGOLD AJ, UNPUBLISHED
[8]  
Franklin F, 1881, COMPTES RENDUS, V92, P448
[9]   LIE-ALGEBRA HOMOLOGY AND MACDONALD-KAC FORMULAS [J].
GARLAND, H ;
LEPOWSKY, J .
INVENTIONES MATHEMATICAE, 1976, 34 (01) :37-76
[10]  
Humphreys J.E., 1972, INTRO LIE ALGEBRAS R