Modelling and optimisation of creep feed deep surface grinding using FEM-based NNGA

被引:0
作者
Narayan, Audhesh [1 ]
Yadava, Vinod [1 ]
机构
[1] Motilal Nehru Natl Inst Technol, Allahabad 211004, Uttar Pradesh, India
关键词
creep feed deep surface grinding; CFDSG; thermal stress; finite element method; FEM; neural network; genetic algorithm;
D O I
10.1504/IJESMS.2016.073320
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the application of a hybrid approach comprising of neural network and genetic algorithm for modelling and optimisation of creep feed deep surface grinding process. Finite element method has been used to generate dataset for neural network model. Subsequently, NN model has been coupled with genetic algorithm to find optimum input parameters of creep feed deep surface grinding. The proposed hybrid approach is well capable to predict thermal stresses in the workpiece quickly and also minimise it with reasonable accuracy during creep feed deep surface grinding process.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 50 条
[31]   Grinding mechanism of high-temperature nickel-based alloy using FEM-FBM technique [J].
Al-Nehari, Mohammed ;
Liang, Guoxing ;
Ming, Lyu ;
Yahya, Waled ;
Algaradi, Ali ;
Iqabal, Mohammed Yousaf .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 112 (1-2) :87-105
[32]   Grinding mechanism of high-temperature nickel-based alloy using FEM-FBM technique [J].
Mohammed Al-Nehari ;
Guoxing Liang ;
Lyu Ming ;
Waled Yahya ;
Ali Algaradi ;
Mohammed Yousaf Iqabal .
The International Journal of Advanced Manufacturing Technology, 2021, 112 :87-105
[33]   FBF-NN-based modelling of cylindrical plunge grinding process using a GA [J].
Nandi, AK ;
Banerjee, MK .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2005, 162 :655-664
[34]   Sintered silicon carbide grinding surface roughness prediction based on deep learning and neural network [J].
Jie Yang ;
Liqiang Zhang ;
Gang Liu ;
Qiuge Gao ;
Long Qian .
Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
[35]   Sintered silicon carbide grinding surface roughness prediction based on deep learning and neural network [J].
Yang, Jie ;
Zhang, Liqiang ;
Liu, Gang ;
Gao, Qiuge ;
Qian, Long .
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2022, 44 (07)
[36]   A new formulation for air-blast fluid–structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations [J].
Y. Bazilevs ;
K. Kamran ;
G. Moutsanidis ;
D. J. Benson ;
E. Oñate .
Computational Mechanics, 2017, 60 :83-100
[37]   An approach using heuristic pheromones-based ACO modelling for green vehicle routing optimisation [J].
Prakash, Ravi ;
Pushkar, Shashank .
INTERNATIONAL JOURNAL OF AD HOC AND UBIQUITOUS COMPUTING, 2022, 40 (1-3) :187-193
[38]   Mathematical Modelling And Optimisation Of Cylindricity Form Parameter In CNC Turning Using Response Surface Methodology And Genetic Algorithm [J].
Gupta, Umashanker ;
Ghorapade, Vinayak U. ;
Raju, G. Appala ;
Nandam, Srinivas Rao .
MATERIALS TODAY-PROCEEDINGS, 2018, 5 (09) :19985-19996
[39]   A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations [J].
Bazilevs, Y. ;
Kamran, K. ;
Moutsanidis, G. ;
Benson, D. J. ;
Onate, E. .
COMPUTATIONAL MECHANICS, 2017, 60 (01) :83-100
[40]   Modelling and analysis of deep drawing with utilisation of vibrations and servo press using response surface methodology [J].
Chu, T. -H. ;
Fuh, K. -H. ;
Yeh, W. -C. .
MATERIALS RESEARCH INNOVATIONS, 2014, 18 :936-939