NUMERICAL-ANALYSIS OF SINGULARITIES IN 2-DIMENSIONS .1. COMPUTATION OF EIGENPAIRS

被引:67
作者
YOSIBASH, Z
SZABO, B
机构
[1] Center for Computational Mechanics, Washington University, St Louis, Missouri, 63130
关键词
FINITE ELEMENT METHOD; STEKLOV METHOD; SINGULAR POINTS; FAILURE FRACTURE ANALYSIS; EIGENPAIRS;
D O I
10.1002/nme.1620381207
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical method is described for the computation of eigenpairs which characterize the exact solution of linear second-order elliptic partial differential equations in two dimensions in the vicinity of singular points. The singularities may be caused by re-entrant corners and abrupt changes in boundary conditions or material properties. Such singularities are of great interest from the point of view of failure initiation: The eigenpairs characterize the straining modes and their amplitudes quantify the amount of energy residing in particular straining modes. For this reason, failure theories directly or indirectly involve the eigenpairs and their amplitudes. This paper addresses the problem of determining the eigenpairs numerically on the basis of the Steklov formulation. Numerical results are presented for several cases. Importantly, the method is applicable to three-dimensional cases.
引用
收藏
页码:2055 / 2082
页数:28
相关论文
共 23 条
[1]  
ANDERSSON B, 1990, FFA199028 AER RES I
[2]   REGULARITY AND NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS WITH PIECEWISE ANALYTIC DATA [J].
BABUSKA, I ;
GUO, BQ ;
OSBORN, JE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1534-1560
[3]  
BABUSKA I, 1992, BN1140 U MAR COLL PA
[4]  
BABUSKA I, 1972, MATH F FINITE ELEMEN, P303
[5]   ON THE SINGULAR BEHAVIOR AT THE VERTEX OF A BI-MATERIAL WEDGE [J].
DEMPSEY, JP ;
SINCLAIR, GB .
JOURNAL OF ELASTICITY, 1981, 11 (03) :317-327
[6]   GREENS-FUNCTIONS, BI-LINEAR FORMS, AND COMPLETENESS OF THE EIGENFUNCTIONS FOR THE ELASTOSTATIC STRIP AND WEDGE [J].
GREGORY, RD .
JOURNAL OF ELASTICITY, 1979, 9 (03) :283-309
[7]  
Grisvard P., 1985, ELLIPTIC PROBLEMS NO, V24
[8]   EXTREMAL PRINCIPLES AND ISOPERIMETRIC INEQUALITIES FOR SOME MIXED PROBLEMS OF STEKLOFFS TYPE [J].
HERSCH, J ;
PAYNE, LE .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1968, 19 (05) :802-&
[9]  
HERSCH J, 1974, ARCH RATION MECH AN, V57, P99
[10]  
Kondrat'ev VA., 1967, T MOSCOW MATH SOC, V16, P209