ANGULAR MOMENTA IN RELATIVISTIC MANY-BODY PROBLEMS

被引:13
|
作者
BARSELLA, B
FABRI, E
机构
来源
PHYSICAL REVIEW | 1962年 / 128卷 / 01期
关键词
D O I
10.1103/PhysRev.128.451
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:451 / &
相关论文
共 50 条
  • [31] A PIPELINE APPROACH TO MANY-BODY PROBLEMS
    SUGIMOTO, D
    PHYSICS WORLD, 1993, 6 (11) : 32 - 35
  • [32] Novel solvable many-body problems
    Oksana Bihun
    Francesco Calogero
    Journal of Nonlinear Mathematical Physics, 2016, 23 : 190 - 212
  • [33] Conservative integrators for many-body problems
    Wan, Andy T. S.
    Bihlo, Alexander
    Nave, Jean-Christophe
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 466
  • [34] BRAIN AND PHYSICS OF MANY-BODY PROBLEMS
    RICCIARD.M
    UMEZAWA, H
    KYBERNETIK, 1967, 4 (02): : 44 - 44
  • [35] Novel solvable many-body problems
    Bihun, Oksana
    Calogero, Francesco
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (02) : 190 - 212
  • [36] CAUSAL FUNCTION IN MANY-BODY PROBLEMS
    MATSUMOTO, H
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1977, 25 (01): : 1 - 36
  • [37] VARIATIONAL METHODS FOR MANY-BODY PROBLEMS
    ROSENBERG, L
    TOLCHIN, S
    PHYSICAL REVIEW A, 1973, 8 (04) : 1702 - 1709
  • [38] NUCLEAR POTENTIAL IN MANY-BODY PROBLEMS
    OSADA, J
    TAKEDA, M
    PROGRESS OF THEORETICAL PHYSICS, 1960, 24 (04): : 755 - 760
  • [39] ON THE MANY-BODY PROBLEM IN RELATIVISTIC QUANTUM-MECHANICS
    LEV, FM
    NUCLEAR PHYSICS A, 1985, 433 (04) : 605 - 618
  • [40] PION DYNAMICS IN THE RELATIVISTIC NUCLEAR MANY-BODY PROBLEM
    SEROT, BD
    AIP CONFERENCE PROCEEDINGS, 1983, (97) : 337 - 348