Strong rate of convergence for the Euler-Maruyama approximation of one-dimensional stochastic differential equations involving the local time at point zero

被引:8
作者
Benabdallah, Mohsine [1 ]
Hiderah, Kamal [2 ]
机构
[1] Univ Ibn Tofail, Dept Math, Fac Sci, Kenitra, Morocco
[2] Univ Aden, Dept Math, Fac Sci, Aden, Yemen
关键词
Euler-Maruyama approximation; strong convergence; stochastic differential equations; local time;
D O I
10.1515/mcma-2018-2021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present the Euler-Maruyama approximation for one-dimensional stochastic differential equations involving the local time at point zero. Also, we prove the strong convergence of the Euler-Maruyama approximation whose both drift and diffusion coefficients are Lipschitz. After that, we generalize to the non-Lipschitz case.
引用
收藏
页码:249 / 262
页数:14
相关论文
共 36 条
[1]  
Barlow M. T., 1988, Stochastics, V25, P1, DOI 10.1080/17442508808833528
[2]  
BASS RF, 2005, SANKHYA, V67, P19
[3]   ON ONE-DIMENSIONAL STOCHASTIC DIFFERENTIAL EQUATIONS INVOLVING THE MAXIMUM PROCESS [J].
Belfadli, R. ;
Hamadene, S. ;
Ouknine, Y. .
STOCHASTICS AND DYNAMICS, 2009, 9 (02) :277-292
[4]  
Benabdallah M., 2017, WEAK RATE CONVERGENC
[5]   Approximation of Euler-Maruyama for one-dimensional stochastic differential equations involving the local times of the unknown process [J].
Benabdallah, Mohsine ;
Elkettani, Youssfi ;
Hiderah, Kamal .
MONTE CARLO METHODS AND APPLICATIONS, 2016, 22 (04) :307-322
[6]   Retrospective exact simulation of diffusion sample paths with applications [J].
Beskos, Alexandros ;
Papaspiliopoulos, Omiros ;
Roberts, Gareth O. .
BERNOULLI, 2006, 12 (06) :1077-1098
[7]   One-dimensional stochastic differential equations with generalized and singular drift [J].
Blei, Stefan ;
Engelbert, Hans-Juergen .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (12) :4337-4372
[8]   On the time inhomogeneous skew Brownian motion [J].
Bouhadou, S. ;
Ouknine, Y. .
BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (07) :835-850
[9]   Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion [J].
Chaumont, L ;
Doney, RA .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (04) :519-534
[10]  
Davis B, 1996, ANN PROBAB, V24, P2007